高灿
- 作品数:3 被引量:8H指数:2
- 供职机构:合肥工业大学计算机与信息学院更多>>
- 发文基金:国家自然科学基金安徽省科技攻关计划更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于运动动态和多层超图关联的多目标跟踪
- 2018年
- 多目标跟踪会面临目标间外观相似、数据丢失、目标间的轨迹交叉以及相机运动等多种问题。文章提出一种基于目标运动动态和多层超图关联的方法,可有效解决以上问题带来的影响。首先,在不使用先验运动模型的前提下,通过利用目标运动动态,获取整个视频内所有目标的运动动态信息,构造轨迹碎片间的相似度比较函数,减小具有相似外观的不同目标之间的误匹配;其次,使用超图关联,对各个轨迹碎片进行全局搜索聚类,使得跟踪问题转化为一个动态搜索超图的超边集问题,优化求解后跟踪系统能够有效处理长时间的遮挡,并且具有较好的鲁棒性。实验表明,在具有挑战性的公共视频序列,该文提出的方法显示了其良好的优越性,能够有效克服目标的复杂运动、相机运动和长时间的遮挡,而这些都是没有任何外观信息的。
- 高灿蒋建国齐美彬胡龙飞
- 关键词:多目标跟踪
- 多特征融合与独立测度学习的行人再识别被引量:5
- 2016年
- 目的由于行人图像受到光照、视角、遮挡和行人姿态等变化的影响,在视觉上容易形成很大的外观差异,对行人再识别造成干扰。为了提高行人再识别的准确性,针对以上问题,提出一种基于多特征融合与独立测度学习的行人再识别算法。方法首先通过图像增强算法对原始图像进行处理,减少因光照变化产生的影响,然后对处理后的图像进行非均匀分割,同时提取行人图像的HSV、RGS、LAB和YCb Cr 4种颜色特征和SILTP(scale invariant local ternary pattern)纹理特征,在基于独立距离测度学习方法下,融合行人的多种特征,学习得到行人图像对的相似度度量函数,最后将行人图像对的相似度进行加权匹配,实现行人再识别。结果在VIPe R、i LIDS和CUHK01这3个数据集上进行实验,其中Rank1(排名第1的搜索结果即为待查询人的比率)分别达到42.7%、43.6%和43.7%,Rank5(排名前5的搜索结果中包含待查询人的比率)均超过70%,识别率有了显著提高,具有实际应用价值。结论提出的多特征融合与独立测度学习的行人再识别算法,能够有效表达行人图像信息,且对环境变化具有较强的鲁棒性,有效提高了识别率。
- 齐美彬胡龙飞蒋建国高灿
- 关键词:多特征融合
- 基于局部稀疏表示的目标跟踪算法被引量:3
- 2019年
- 根据局部稀疏表示的特点,文章提出了一种基于局部稀疏表示的目标跟踪算法,该算法利用图像的局部稀疏系数作为训练样本,在贝叶斯分类器的框架下完成跟踪任务。首先,使用字典来提取局部图像块的稀疏系数,作为图像特征;然后通过训练简单的贝叶斯分类器来区分目标与背景;最后使用两步搜索策略对目标进行准确跟踪;此外,该算法还使用了一种能够去除遮挡干扰的鲁棒性更新策略。对比实验结果表明,该算法具有较为稳定的跟踪效果。
- 把萍蒋建国齐美彬陆磊高灿
- 关键词:贝叶斯分类器