谭莉
- 作品数:2 被引量:4H指数:1
- 供职机构:西南科技大学信息工程学院更多>>
- 发文基金:博士科研启动基金更多>>
- 相关领域:自动化与计算机技术化学工程机械工程更多>>
- IIWPSO-PNN在化工过程故障诊断中的应用被引量:1
- 2017年
- 概率神经网络(PNN)已成功应用于化工过程故障诊断。在概率神经网络中,平滑参数对网络性能有很大的影响,并且很难确定。因此,采用粒子群优化(PSO)算法,寻找最优平滑参数。针对粒子群优化算法中线性变化的惯性权重易使其陷入局部极值问题,采用非线性变化的惯性权重替代线性变化的惯性权重,并将其应用于改进惯性权重粒子群(IIWPSO)算法。将IIWPSO算法应用于概率神经网络中(即IIWPSO-PNN),使其自动搜索并寻找最优的平滑参数用于概率神经网络的训练和测试。与前人提出的线性变化惯性权重、两种非线性变化的惯性权重(分别记为w_1、w_2和w_3)进行比较,将w_1、w_2和w_3应用于PSO-PNN中(分别记为PSOPNN1、PSO-PNN2和PSO-PNN3)。最后将IIWPSO-PNN应用于田纳西-伊斯曼过程中,与PNN、PSO-PNN、PSO-PNN1、PSOPNN2和PSO-PNN3网络进行比较。试验结果表明:IIWPSO-PNN在解决故障诊断问题时,识别率与收敛速度都有较大的提高。试验结果验证了IIWPSO-PNN算法应用于化工过程的可行性和有效性。
- 谭莉于春梅
- 关键词:概率神经网络故障诊断惯性权重粒子群算法化工过程
- 基于PCA-LVQ神经网络的化工过程故障诊断被引量:3
- 2016年
- 提出将学习矢量量化(LVQ)神经网络应用于化工过程的故障诊断中。LVQ算法是在有教师状态下对竞争层进行训练的一种学习算法,其网络结构简单,适用于故障诊断。当网络输入数据过大时,会导致计算复杂,计算速度缓慢,因此,采用主元分析法(PCA)对数据进行降维处理,将得到的数据作为网络的输入,再用LVQ算法对田纳西-伊斯曼(TE)过程进行故障诊断。最后,将诊断识别率与LVQ算法以及BP算法进行比较,仿真表明,采用PCA降维处理的LVQ算法在识别率上有了较大的提高。
- 谭莉于春梅
- 关键词:主元分析法故障诊断