您的位置: 专家智库 > >

朱占敏

作品数:23 被引量:40H指数:5
供职机构:嘉兴学院数理与信息工程学院数学系更多>>
发文基金:湖北省教育厅科学技术研究项目国家自然科学基金湖北省教育厅重点项目更多>>
相关领域:理学文化科学更多>>

文献类型

  • 23篇中文期刊文章

领域

  • 23篇理学
  • 1篇文化科学

主题

  • 8篇内射
  • 6篇遗传环
  • 6篇内射模
  • 5篇凝聚环
  • 4篇英文
  • 4篇正则
  • 4篇正则环
  • 4篇半遗传环
  • 3篇平坦模
  • 3篇零因子
  • 3篇结合环
  • 3篇半单
  • 3篇半单环
  • 3篇P-内射模
  • 3篇V-环
  • 2篇代数
  • 2篇单位元
  • 2篇幂零
  • 2篇NOETHE...
  • 2篇FP-内射模

机构

  • 17篇湖北民族大学
  • 7篇嘉兴学院
  • 3篇东南大学

作者

  • 23篇朱占敏
  • 2篇张小向
  • 2篇谭志松
  • 1篇夏章生
  • 1篇陈建龙

传媒

  • 6篇湖北民族学院...
  • 2篇内蒙古大学学...
  • 2篇浙江大学学报...
  • 1篇数学理论与应...
  • 1篇河北师范大学...
  • 1篇湘潭大学自然...
  • 1篇复旦学报(自...
  • 1篇重庆师范学院...
  • 1篇纯粹数学与应...
  • 1篇辽宁大学学报...
  • 1篇数学年刊(A...
  • 1篇西南师范大学...
  • 1篇新疆大学学报...
  • 1篇山东大学学报...
  • 1篇中央民族大学...
  • 1篇吉林师范大学...

年份

  • 1篇2017
  • 1篇2011
  • 2篇2010
  • 1篇2009
  • 1篇2008
  • 1篇2006
  • 1篇2004
  • 4篇2003
  • 4篇2002
  • 4篇2001
  • 1篇2000
  • 1篇1998
  • 1篇1997
23 条 记 录,以下是 1-10
排序方式:
极小内射模、极小平坦模与某些环被引量:12
2004年
称一个右R-模M是极小平坦的,如果对任一极小左理想I,自然同态M RI→M RR是单的.环R称为左极小遗传的,如果R的每个极小左理想都是投射的.环R称为左极小正则的,如果R的每个极小左理想都是RR的直和项.环R称为左极小凝聚的,如果R的每个极小左理想是有限表现的.给出了极小内射模和极小平坦模的一些刻划,并用极小内射模和极小平坦模刻划了极小遗传环、极小正则环和极小凝聚环.
朱占敏
关键词:极小内射模
FP-内射模的两个特征被引量:2
2008年
本文证明了一个右R-模M是FP-内射的当且仅当对任意正整数n,由M导出的右Rn×n-模Mn×n是P-内射的,当且仅当对任意正整数n,由M导出的右Rn×n-模Mn×n是GP-内射的.
朱占敏
关键词:FP-内射模P-内射模GP-内射模
绝对余纯模
2003年
引入了绝对纯模的对偶概念——绝对余纯模 ,还引入了半遗传环的对偶概念——余半遗传环 ,给出了绝对余纯模的一些等价刻画 ,研究了绝对余纯模的一些性质 ,并用绝对余纯模刻画了余正则环和余半遗传环 .
朱占敏谭志松
关键词:结合环
复亚正定矩阵被引量:1
1997年
通过引入的复亚正定矩阵概念,得出一系列有用的结果.
朱占敏
关键词:正定矩阵亚正定矩阵复亚正定矩阵
强遗传环和强半遗传环
2000年
引入强遗传环和强半遗传环的概念 ,并给出了这两类环的一些刻画 。
朱占敏
关键词:单位元
Noether环的一个特征被引量:2
2001年
主要证明了 :环R为左Noether环当且仅当对任一有限生成左R 模A及任意一集左R 模 {Bi|i∈I} ,有Ext1R(A , i∈IBi)≌ i∈IExt1R(A ,Bi)成立。
朱占敏
关键词:NOETHER环单位元结合环FP-内射模
On minimal quasi-injective modules and strong Kasch modules被引量:2
2009年
设R为一个环,M为一个右R-模.若每个从M的单子模到M的同态都可以开拓为M的自同态,则称M为一个极小拟内射模.若每个单的右R-模都可以嵌入M,则称M为一个强Kasch模.本文研究了这两类模的一些刻画和性质.
朱占敏张小向
关键词:半完全环半局部环
一类具有零因子的环的结构
2003年
设R为有限环,其左零因子集为D,D≠R,D2=0,则R的特征为素数或素数的平方.进一步,当charR=p为素数且(?)d∈D-l(R)有dR=Rd时,则存在非负整数r,非负整数n≥r及自然数s,使得R(?)Ar,n,s.
朱占敏谭志松
关键词:有限环幂零根
FCG-投射模和FCGP-环被引量:5
2002年
一个左 R 模RA称为 FCG 投射模 ,如果对于任一有限余生成模 RM,A是 M 投射的 .环 R称为 FCGP环 ,如果任一 FCG投射 R模都为投射模 .给出了 FCG投射模的等价条件 ,并用 FCG投射模刻画了左 V环和半单环 .讨论了 FCGP环的性质和等价条件 ,得出了 R为半单环当且仅当 R为左 V环且为 FCGP 环 ,FCGP 环是 Morita不变的 .
朱占敏
关键词:V-环半单环等价条件
弱拟P-内射模(英文)
2011年
设R为1个环,M是1个右R-模,S=End(MR),如果对任一0≠s∈S,都存在t∈S,使得ts≠0(st≠0)且ts(M)(st(M))到M的每一同态都可扩张为M的自同态,由称M是右(左)弱拟P-内射的,简称右(左)WQP-内射的,给出了这两类模的一些特征,并研究了满足一些附加条件的这两类模的一些性质.
朱占敏张小向
共3页<123>
聚类工具0