For a class of asymptotically periodic quasilinear Schr?dinger equations with critical growth the existence of ground states is proved.First applying a change of variables the quasilinear Schr?dinger equations are reduced to semilinear Schr?dinger equations in which the corresponding functional is well defined in H1 RN .Moreover there is a one-to-one correspondence between ground states of the semilinear Schr?dinger equations and the quasilinear Schr?dinger equations.Then the mountain-pass theorem is used to find nontrivial solutions for the semilinear Schr?dinger equations. Finally under certain monotonicity conditions using the Nehari manifold method and the concentration compactness principle the nontrivial solutions are found to be exactly the same as the ground states of the semilinear Schr?dinger equations.