[Objective] To investigate the primary and secondary metabolism during the seed germination of Scutellaria baicalensis Georgi. [Method] The activities of SOD and POD were determined with lactoflavine-NBT method and guaiacol-colorimetry as- say, respectively. The activities of CAT, APX,PAL and C4H were determined with ultraviolet spectrophotometry. The contents of secondary metabolites were detected by High-performance Liquid Chromatography (HPLC). [Result] The results indicate that the soluble sugar content decreased during the first 5 days and then increased when the cotyledons formed. The contents of PAL, C4H and CHS continuously in- creased at different stages during the seed germination process. The secondary metabolites also showed the consistent variation trend. In addition, the contents of secondary metabolites had significant positive correlation with the key enzyme activi- ty. [Conclusion] The formation of secondary metabolites is significantly positively cor- related with the key enzyme during the seed germination process. Therefore, the key enzyme activity can be enhanced by adopting appropriate measures to improve the secondary metabolites, thereby obtaining high-quality medicinal materials.
This study aimed to investigate the primary and secondary metabolism of Scutel aria baicalensis Georgi during seed germination process under different il umination time. [Method] Chlorophyl (CHL) content, soluble sugar content, phenylalanine ammonia lyase (PAL) activity and cinnamate-4-hydroxylase (C4H) ac-tivity were determined with ultraviolet spectrophotometry. The secondary metabolites were detected by high performance liquid chromatography (HPLC). [Result] The re-sults indicated that the germination of S. baicalensis seeds was not sensitive to light and the seedlings were very sensitive to light. CHL content, soluble sugar content, PAL activity and C4H activity increased continuously with the il umination time. The secondary metabolites showed a similar trend. [Conclusion] Il umination time promoted the formation of leaf photosynthetic pigments, thereby affecting the synthesis of primary and secondary metabolites and the activities of PAL and C4H. Therefore, the quality of S. baicalensis can be improved by regulating the il umina-tion time appropriately.