The effects of adjusting technological conditions on the phosphorous enrichment of adjusted converter slag were investigated. The results showed that the phosphorus could he effectively enriched to 2CaO · SiO2 and 2CaO · SiO2-3CaO· P2O5 solid solution (SS, namely phosphorus-rich phase) to be formed with the decreasing of basicity and cooling rate. Moreover, the morphology of the phosphorus-rich phase changed from granular for the original converter slag with higher basicity to the coexistence of granular shape and rod-like for the adjusted slag with lower basicity. P2 05 content in phosphorus-rich phase exceeded 30° while the hasicity was 1.3 at the cooling rate of 1.0 ℃/min.
The 3D turbulence k-ε model flow of the steel melt (continuous phase) and the trajectories of individual gas bubbles (dispersed phase) in a continuous casting mold were simulated using an Eulerian-Lagrangian approach. In order to investigate the effect of bubble size distribution, the radii of bubbles are set with an initial value of 0. 1- 2.5 mm which follows the normal distribution. The presented results indicate that, in the submerged entry nozzle (SEN), the distribution of void fraction is only near the wall. Due to the fact that the bubbles motion is only limited to the wall, the deoxidization products have no access to contacting the wall, which prevents clogging. In the mold, the bubbles with a radius of 0. 25--2.5 mm will move to the top surface. Larger bubbles issuing out of the ports will attack the menis- cus and induce the fluid flows upwards in the top surface near the nozzle. It may induce mold powder entrapment into the mold. The bubbles with a radius of 0.1--0.25 mm will move to the zone near the narrow surface and the wide surface. These small bubbles will probably be trapped by the solidification front. Most of the bubbles moving to the narrow surface will flow with the ascending flow, while others will flow with the descending flow.
Chong-lin LIUZhi-guo LUOTao ZHANGShen DENGNan WANGZong-shu ZOU
The enrichment behavior of phosphorus in CaO-SiO2-FeOx-P2O5 slag was studied by making an investigation on the distribution of phosphorous content in the CaO-SiO2-FeOx-P2O5 molten slag.The research results showed that the 2CaO·SiO2 solid particles existing in molten slag were the condensation sites for the phosphorus enrichment.The enrichment process of phosphorus in the molten slag can be recognized as three substeps:mass transfer of phosphorus from bulk slag to the surface of 2CaO·SiO2 particle,superficial solid solution reaction of phosphorus around the 2CaO·SiO2 particle,and diffusion of phosphorus through the product layer of 2CaO·SiO2-3CaO·P2O5 solid solution to the inner of 2CaO·SiO2 particle.Moreover,higher temperature is favorable to the phosphorous enrichment from molten bulk slag to the 2CaO·SiO2 particles.
A high temperature equilibration experiment was carried out to investigate the effect of oxygen partial pres- sure on the phase equilibria and liquidus in CaO-Al2O3- FeOx system with the intermediate oxygen partial pressures of 10.13 Pa and 1.01 × 10^-3 Pa. The equilibrated phases and their compositions of the quenched samples were analyzed by using SEM/EPMA (Scanning Electron Microscope/Electron Probe Micro Analysis) and XRD (X Ray Diffraction). The phase equilibrium results include two cases, the two phase coexistence and the three-phase coexistence in the high Al2O3 region with oxygen partial pressure of either 10.13 Pa or 1.01 × 10^-3 Pa. Effects of oxygen partial pressure and temperature on the liquidus along the primary phase fields of CaO · Al2O3 and CaO · 2Al2O3 were nota hle. With the decrease of oxygen partial pressure, the liquid area expands and the liquidus of CaO · Al2O3 and CaO · 2Al2O3 primary fields moves to the Al2O3-FeOx region. On the other hand, the liquid area of CaO Al2O3-FeOx sys tem extends extremely to the high Al2O3 region with the temperature increasing from 1 400 to 1 500℃, especially at lower oxygen partial pressure. The present experiment results are in good agreement with the calculated ones by FactSage.
Magnesium carbonate whisker as precursor was prepared from the low-grade magnesite tailings by the route of calcination, hydration, carbonation and thermal decomposition, and then MgO whisker was prepared by calcining the precursor. In addition, the effect of MgO whisker addition on sintering and thermal shock resistance of refractory was also investigated. The results show that the thermal decomposition product is MgCO3·3H2O and its morphology is remarkably influenced by the types of additives, and magnesium carbonate whisker with the length of 10-60 μm and length-diameter ratio of 10-20 is successfully prepared when a type of soluble magnesium salt is added. MgO whisker with the length of 10-40 μm is derived from precursor with the heating rate of 1 ℃/min. The thermal shock resistance of refractory is significantly improved by the addition of MgO whisker due to its effect on binding and preventing crack expanding, and the proper amount of whisker addition is around 3%.