The sudden death of entanglement is investigated for the non-Markovian dynamic process of a pair of interacting flux qubits under a thermal bath. The results show that, for initially two-qubit entangled states, entanglement sudden death (ESD) always happens in the thermal reservoir, where its appearance strongly depends on the environment. In particular, ESD of the qubits occurs more easily for the non-Markovian process than for the Markovian one.
In Born-Markov approximation, this paper calculates the energy relaxation time T1 and the decoherence time T2 of a floating flux qubit by solving the set of Bloeh-Redfield equations. It shows that there are two main factors influencing the floating flux qubits: coupling capacitor in the circuit and the environment resistor. It also discusses how to improve the quantum coherence time of a qubit. Through shunt connecting/ series connecting inductive elements, an inductive environment resistor is obtained and further the reactance component of the environment resistor is improved, which is beneficial to the enhancement of decoherence time of floating flux qubits.
A scheme to perfectly preserve an initial qubit state in geometric quantum computation is proposed for a single- qubit geometric quantum gate in a nuclear magnetic resonance system. At first, by adjusting some magnetic field parameters, one can let the dynamic phase be proportional to the geometric phase. Then, by controlling the azimuthal angle in the initial state, we may realize a geometric quantum gate whose fidelity is equal to one under cyclic evolution. This means that the quantum information is no distortion in the process of geometric quantum computation.
The entanglement evolution of the coupled qubits interacting with a non-Markov environment is investigated in terms of concurrence. The results show that the entanglement of the quantum systems depends not only on the initial state of the system but also on the coupling between the qubit and the environment. For the initial state (100) ± |11〉)/√2, the coupled qubits will always been in the maximum entangled state under an asymmetric coupling. For the initial state (|01〉 ± +10〉)/√2, in contrast, the entangling degree of the coupled qubits is always equal to unity and does not depend on the evolving time under the symmetric coupling. We find that the stronger the interaction between the qubits is, the better the struggle against the entanglement sudden death is.
A scheme is proposed to controll the decoherence of three-level rf-SQUID qubit with asymmetric potential by designing an external electric circuit for superconductive flux qubit. The results show that it may not only raise the gate speed but also extend decoherence time for a three-level structure.