This study describes the isolation, identification of allelochemicals of the melon fly (Myiopardalis pardalina Bigot.), using the GC-MS method. A food attractant has been identified and a method for the synthesis of its synthetic analogue has been developed. Also, a route for the synthesis of para pheromone, raspberry ketone, has been proposed.
In aquaculture,high-density seaweed farming brings higher economic benefits but also increases outbreaks of diatom felt.The effective control of diatom felt in high-density seaweed farming has always been a research hotspot.This study selected two potential allelochemicals 2-hydroxycinnamic acid and quinic acid to explore their effects on a diatom Nitzschia closterium and an economic seaweed Monostroma nitidum.The results showed that 2-hydroxycinnamic acid had better inhibitory effects than quinic acid on the growth,pigment content and photosynthetic efficiency of N.closterium.Their half-maximal inhibitory concentrations at 120 h(IC_(50–120 h))were 0.9000 and 1.278 mM,respectively.Additionally,these allelochemicals had limited inhibitory effects on the growth,pigment content and photosynthetic efficiency of M.nitidum before 24 h.To further explore the allelopathic effect of these chemicals,this study focused on the photosystem II energy fluxes of N.closterium.It was found that 3 mM 2-hydroxycinnamic acid could destroy the whole photosynthetic system by devastating the PSII reaction centre(RC)before 24 h;however,the same concentration of quinic acid could only down-regulate the electron transport efficiency by changing the effective antenna size of an active RC and downregulating the PSII reaction centre density.These experimental results are expected to provide a new strategy to control diatom felt blooms on the high-density seaweed farming areas.
Bowen HuangEnyi XieYu RanXinyi ChenYongjian HuangJianjun Cui
Allelochemicals sustained-release microspheres(ACs-SMs)exhibited great inhibition effect on algae,however,few studies have focused on ACs-SMs toxicity on invertebrate.In this study,the effects of single high-concentration ACs(15 mg/L,SH-ACs),repeated lowconcentration ACs(3×5 mg/L,RL-ACs)and ACs-SMs containing 15 mg/L ACs exposure on the ingestion,incorporation,and digestion of Daphniamagna Straus(DS)were investigated by stable isotope 15N labeling method.Meanwhile,the diversity and abundance of microflora in DS guts were determined by 16S rRNA genes and cloning methods.The results showed that SH-ACs exposure caused 50%and 33.3%death rates for newborn and adult DS,while RL-ACs exposure caused 10%death rate for newborn DS and no obvious effect on the activity of adult DS.And ACs-SMs exposure did not diminish the motility of both newborn and adult DS,indicating the lower acute toxicity of ACs-SMs.Furthermore,SH-ACs inhibited the ingestion(-6.45%),incorporation(-47.1%)and digestion(-53.8%)abilities of DS and reduced the microbial abundance(-27.7%)in DS guts.Compared with SH-ACs,RL-ACs showed relatively low impact on the ingestion(-3.23%),incorporation(-5.89%)and digestion(-23.9%)abilities of DS.Interestingly,ACs-SMs enhanced the ingestion(+9.68%),incorporation(+52.9%)and digestion(+51.3%)abilities of DS and increased the microbial abundance(+10.7%)in DS guts.Overall ACs and ACs-SMs reduced the diversity of microflora in DS guts.In conclusion,ACs-SMs can release ACs sustainably and prolong the sustained release time,which not only effectively reduce the toxicity of ACs,but also had positive effects on DS.
Continuous cropping(CC)obstacle is a major threat in legume crops production;however,the underlying mechanisms concerning the roles allelochemicals play in CC obstacle are poorly understood.The current 2-year study was conducted to investigate the effects of different kinds and concentrations of allelochemicals,p-hydroxybenzoic acid(H),cinnamic acid(C),phthalic acid(P),and their mixtures(M)on peanut root growth and productivity in response to CC obstacle.Treatment with H,C,P,and M significantly decreased the plant height,dry weight of the leaves and stems,number of branches,and length of the lateral stem compared with control.Exogenous application of H,C,P,and M inhibited the peanut root growth as indicated by the decreased root morphological characters.The allelochemicals also induced the cell membrane oxidation even though the antioxidant enzymes activities were significantly increased in peanut roots.Meanwhile,treatment with H,C,P,and M reduced the contents of total soluble sugar and total soluble protein.Analysis of ATPase activity,nitrate reductase activity,and root system activity revealed that the inhibition effects of allelochemicals on peanut roots might be due to the decrease in activities of ATPase and NR,and the inhibition of root system.Consequently,allelochemicals significantly decreased the pod yield of peanut compared with control.Our results demonstrate that allelochemicals play a dominant role in CC obstacle-induced peanut growth inhibition and yield reduction through damaging the root antioxidant system,unbalancing the osmolytes accumulation,and decreasing the activities of root-related enzymes.
Allelopathy is an important mechanism in Eucalyptus plantations that causes detrimental impacts on understory diversity.Phenolic compounds are the main allelochemicals suppressing understory plants.However,the dynamic changes in phenolic allelochemicals and their relationship with understory diversity with increasing age of Eucalyptus plantations remain largely unclear.In this study,the understory plant diversity was assessed and phenolic compounds identified from leaf litter,roots,and rhizosphere soil samples in a Eucalyptus grandis plantation at two-year intervals for ten years using ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS).The abundance and diversity of under story plant species were lowest in 4-year-old plantations and increased significantly with age.Seven phenolic acids and 10 flavonoids were identified from leaf litter,roots,and rhizosphere soils.Most of the potential phenolic allelochemicals,such as salicylic acid,gallic acid,4-hydroxybenzoic acid,and epicatechin,were more abundant in younger plantations,especially at4 years old.The concentrations of phenolic compounds in the rhizosphere zone were significantly lower than in litter and root samples and did not change significantly with an increase in age.Notably,phenolic compounds contributed more to the variation in the understory plants than soil factors.Hydroxyphenyllactic acid,ellagic acid,quercetin,salicylic acid,and 4-hydroxybenzoic acid were the main phenolic compounds explaining the variation in plant diversity with plantation age.These findings indicate that young E.grandis plantations,especially at four years of age,merit a greater focus because of their lower understory plant diversity and higher allelopathic potential.