扩展目标检测通常采用距离像能量积累检测的方法,由于距离像信息掌握不完备,陷落损失会降低检测性能。本文提出一种距离像先验引导的扩展目标检测方法,通过利用距离像包络模先验,对信号进行积累以提升检测性能。该方法考虑了复距离像与复高斯白噪声的相干叠加与相位预测不准的因素,采用将观测数据取模的检测模型,基于似然比检测(Likelihood Ratio Test,LRT)理论推导了低信噪比下的特征平方匹配检测器。该检测器将目标复距离像的包络模与观测数据的包络模进行平方匹配,并通过门限判决来判断目标是否存在。包络模先验的获取是通过从ISAR图像提取二维散射中心,向对应姿态角下的雷达视线方向进行投影,来获得目标近似的一维散射中心模型,再由该模型进一步生成目标距离像的包络模先验。同时,本文从理论与实验两方面分析了能量检测器和特征平方匹配检测器之间的关系,通过散射中心模型重构与暗室测量的方法获取数据进行了实验验证。实验结果表明:在低信噪比下,距离像先验引导的特征平方匹配检测器能有效提升目标的检测性能,并且对先验模型失配的情况具有良好的适应性。
针对相位编码正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)雷达动目标探测问题,该文提出了一种基于通道分离和最大似然原理相结合的运动参数估计方法。首先,利用OFDM信号的正交性分离出多通道信号,并与相位编码参考信号在快时间域相关后获得各通道的1维距离像。随后,利用Keystone变换校正子载波多普勒偏移与慢时间之间的耦合,并在慢时间域和子载波域进行相参积累得到距离-多普勒2维谱。结合CLEAN技术对距离-多普勒2维谱进行谱峰搜索,获得各个目标的位置和速度参数估计量。以此为初值,利用牛顿迭代算法对似然函数进行优化,最终获得运动参数的近似最大似然估计(Approximate Maximum Likelihood Estimator,AMLE)。仿真实验表明,该文算法在计算复杂性和参数估计精度上都优于传统的Keystone估计算法,在相同均方根误差(Root-Mean-Square Error,RMSE)下其输入信噪比改善了约4 d B,且均方误差接近Cramer-Rao下限。