2025年1月11日
星期六
|
欢迎来到佛山市图书馆•公共文化服务平台
登录
|
注册
|
进入后台
[
APP下载]
[
APP下载]
扫一扫,既下载
全民阅读
职业技能
专家智库
参考咨询
您的位置:
专家智库
>
>
李清伟
作品数:
1
被引量:7
H指数:1
供职机构:
同济大学附属同济医院
更多>>
发文基金:
国家教育部博士点基金
国家自然科学基金
更多>>
相关领域:
自动化与计算机技术
更多>>
合作作者
张明辉
上海财经大学信息管理与工程学院
张涛
上海财经大学信息管理与工程学院
张玥杰
复旦大学计算机科学技术学院上海...
作品列表
供职机构
相关作者
所获基金
研究领域
题名
作者
机构
关键词
文摘
任意字段
作者
题名
机构
关键词
文摘
任意字段
在结果中检索
文献类型
1篇
中文期刊文章
领域
1篇
自动化与计算...
主题
1篇
支持向量
1篇
支持向量机
1篇
子群
1篇
自回归模型
1篇
向量
1篇
向量机
1篇
粒子群
1篇
PSO
1篇
SVM
1篇
FMRI
机构
1篇
复旦大学
1篇
同济大学附属...
1篇
上海财经大学
作者
1篇
张玥杰
1篇
张涛
1篇
张明辉
1篇
李清伟
传媒
1篇
同济大学学报...
年份
1篇
2016
共
1
条 记 录,以下是 1-1
全选
清除
导出
排序方式:
相关度排序
被引量排序
时效排序
基于粒子群-支持向量机的时间序列分类诊断模型
被引量:7
2016年
构建一种基于粒子群算法-支持向量机(PSO-SVM)的磁共振功能成像(fMRI)时间序列分类诊断模型,通过针对脑区多维时间序列数据的深层次分析实现病症患者和健康者的准确判断与区分,为面向fMRI时间序列数据的病症诊断和预测提供有效科学依据.该方法在以下4个方面不同于其他已有相关研究工作:(1)构建基于自回归模型的脑区多维时间序列数据特征表示;(2)构建基于支持向量机模型的脑区多维时间序列数据分类机制;(3)构建基于粒子群算法的分类学习参数寻优策略;(4)建立融合上述特征表示、优化分类与参数优选模式的fMRI时间序列数据分类诊断模型.通过以精神抑郁症作为实证分析的具体案例,所提出分类诊断模型已取得良好实验效果,展示出其有效性与合理性.
张涛
张明辉
李清伟
张玥杰
关键词:
自回归模型
全选
清除
导出
共1页
<
1
>
聚类工具
0
执行
隐藏
清空
用户登录
用户反馈
标题:
*标题长度不超过50
邮箱:
*
反馈意见:
反馈意见字数长度不超过255
验证码:
看不清楚?点击换一张