2025年3月27日
星期四
|
欢迎来到佛山市图书馆•公共文化服务平台
登录
|
注册
|
进入后台
[
APP下载]
[
APP下载]
扫一扫,既下载
全民阅读
职业技能
专家智库
参考咨询
您的位置:
专家智库
>
>
陈锦荣
作品数:
1
被引量:0
H指数:0
供职机构:
中国矿业大学计算机科学与技术学院
更多>>
发文基金:
江苏省自然科学基金
国家自然科学基金
更多>>
相关领域:
自动化与计算机技术
更多>>
合作作者
丁世飞
中国科学院计算技术研究所
作品列表
供职机构
相关作者
所获基金
研究领域
题名
作者
机构
关键词
文摘
任意字段
作者
题名
机构
关键词
文摘
任意字段
在结果中检索
文献类型
1篇
中文期刊文章
领域
1篇
自动化与计算...
主题
1篇
神经网
1篇
神经网络
1篇
网络
1篇
逻辑神经网络
1篇
粗糙集
机构
1篇
中国科学院
1篇
中国矿业大学
作者
1篇
丁世飞
1篇
陈锦荣
传媒
1篇
计算机科学
年份
1篇
2011
共
1
条 记 录,以下是 1-1
全选
清除
导出
排序方式:
相关度排序
被引量排序
时效排序
一种粗逻辑神经网络的构造和学习方法
2011年
传统的粗逻辑神经网络可以对信息系统及粗推理决策进行研究,能够深入地揭示粗糙集理论实质,但对于处理非单值输入问题不能取得良好的效果。粗糙神经元的上边界和下边界恰好能解决这一方面的问题,且随着粗集理论的不断发展,上下边界的概念得到了广泛的应用。综合两个方面的优点,提出了一种粗逻辑神经网络的构造与学习方法。它主要由传统粗逻辑神经网络和粗糙神经元的思想(模式中每一个特征变量都包含上界和下界两个边界)构成:边界粗逻辑神经网络。首先给出了粗糙神经元和粗逻辑及决策的基本知识,然后提出了边界粗逻辑神经网络的结构和学习方法及两种模型并比较了模型间的优缺点。与传统粗逻辑神经网络相比,这类神经网络能更有效地处理非单值和连续近似域函数问题。最后提出可以进一步优化的方向。
陈锦荣
丁世飞
关键词:
粗糙集
神经网络
全选
清除
导出
共1页
<
1
>
聚类工具
0
执行
隐藏
清空
用户登录
用户反馈
标题:
*标题长度不超过50
邮箱:
*
反馈意见:
反馈意见字数长度不超过255
验证码:
看不清楚?点击换一张