何艳萍
- 作品数:2 被引量:41H指数:2
- 供职机构:第二炮兵工程学院更多>>
- 发文基金:中国博士后科学基金更多>>
- 相关领域:机械工程电子电信自然科学总论更多>>
- EMD端点效应的改进型混沌延拓方法及其在机械故障诊断中的应用被引量:15
- 2011年
- 针对经验模态分解(Empirical Mode Decomposition,EMD)的端点效应问题,分析了三次样条插值产生端点效应的机理,指出了现有延拓方法的不足,提出采用Lyapunov指数预测模型进行边界延拓,以此减小端点效应在经验模态分解过程中产生的影响。在采用最大Lyapunov指数法进行边界延拓时,针对Lyapunov指数预测模型所表示的平均发散度仅是轨道演化规律的一个近似模型,提出采用局域发散度代替最大Lyapunov指数进行改进,以改进预测模型的预测精度。基于改进型Lyapunov指数边界延拓方法,由于引入时间序列预测模型使端点处的延拓更加合理,所延拓数据更加趋于真实,在希尔伯特-黄变换(Hilbert-Huang Transform,HHT)实现过程中仅需一次延拓,实现了准确的EMD分解。仿真计算和转子系统故障试验分析结果表明,所用方法可以有效解决EMD的端点效应问题。
- 蔡艳平李艾华石林锁何艳萍赵静茹
- 关键词:经验模态分解端点效应LYAPUNOV指数故障诊断
- 集成经验模态分解中加入白噪声的自适应准则被引量:26
- 2011年
- 现有集成经验模态分解(ensemble empirical mode decomposition,简称EEMD)算法中加入白噪声的大小与集成的次数都需要人为按照经验设定,缺乏可靠性。针对此问题,提出了自适应集成经验模态分解(adaptive ensemble empirical mode decomposition,简称AEEMD)算法,并给出了一种在EEMD方法中有效加入白噪声的可依据准则。首先,计算出输入信号的幅值标准差;然后,采用高通滤波方法对输入信号进行分解,通过计算高通滤波分解后的高频分量幅值标准差和输入信号幅值标准差来确定加入白噪声的幅值标准差,在此基础之上,EEMD集成次数根据期望的信号分解相对误差和加入白噪声的幅值标准差惟一确定;最后,为了进一步提高相邻模态函数的正交性,对AEEMD分解结果进行二次处理。仿真试验验证了AEEMD方法的抗混分解能力,将AEEMD方法应用于转子油膜涡动的故障监测诊断中,提取出转子油膜涡动的故障特征,并与基本EMD算法进行了对比,结果表明,AEEMD更加精确地提取了油膜涡动信号的故障特征。
- 蔡艳平李艾华徐斌许平何艳萍
- 关键词:旋转机械故障诊断