时间延迟干涉技术(Time-delay Interferometry,TDI)对中国引力波探测项目及其它天基激光精密测量任务具有重要的参考价值。在天基引力波探测任务中,需利用激光干涉仪对无拖曳检验质量块间实现十皮米量级的位移测量精度。其中,激光源频率噪声和时钟频率噪声是两项主要噪声。在欧洲主导的LISA(Laser Interferometer Space Antenna)引力波探测项目中,利用TDI对三星上的十二组相位测量值进行延迟和线性组合,构造出臂长相等的干涉仪,从而消除了激光源噪声以及光学平台位移噪声。为了消除时钟噪声,将时钟信号倍频到GHz,再通过相位调制的方式加载到星间激光链路上,最终从时钟边带拍频信号中提取出时钟噪声,并在TDI的数据组合中将时钟噪声项消除。为了实现TDI的时间延迟处理,要求对星间绝对距离进行精确测量。因此,在TDI机制中,星间激光链路需要同时实现位移测量、时钟边带调制和绝对距离测量3个功能。其中,后两个功能分别大约消耗10%和1%的载波激光功率。LISA项目针对TDI技术的地面论证结果表明,TDI技术对激光源和时钟的噪声抑制分别达到了109和5.8×104倍。
K频段微波测距(KBR)系统是低-低卫星跟踪卫星(SST-LL)重力测量卫星的关键载荷之一,其性能直接影响地球重力场空间变化率的测定结果,而KBR系统中正交下变频过程引入的幅相不平衡误差对系统测距精度有着重要影响。针对幅相不平衡误差对KBR系统测距精度的影响,通过分析幅相不平衡误差在KBR系统中的传递过程,并结合MATLAB软件建立了KBR幅相不平衡误差仿真模型,理论分析和仿真结果互相验证得出幅相不平衡误差与系统测距精度之间的定量关系。建议KBR系统设计中:1δ相位抖动不平衡控制在1度以内,固定相位不平衡控制在5度以内,1δ幅度抖动不平衡控制在0.5 d B以内,固定幅度不平衡控制在0.5 d B以内。