刘琮
- 作品数:2 被引量:37H指数:2
- 供职机构:同济大学电子与信息工程学院更多>>
- 发文基金:湖南省教育厅优秀青年基金湖南省自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于深度时空域卷积神经网络的表情识别模型被引量:14
- 2016年
- 基于特征抽取是表情识别算法中的重要步骤,但是现有算法依赖手工设计特征且适应性差等问题,提出基于深度时空域卷积神经网络的表情识别模型,采用数据驱动策略直接从表情视频中自动抽取时空域中的动静态特征。使用新颖的卷积滤波器响应积替代权重和,使得模型能同时抽取到动态特征和静态特征。引入深度学习的多层设计,使得模型能逐层学习到更抽象、更宏观的特征。采用端对端的有监督学习策略,使得所有参数在同一目标函数下优化。研究结果表明:训练后的卷积核类似于Garbor滤波器的形态,这与视觉皮层细胞对激励的响应相似;该模型能对表情视频进行更准确分类;通过与其他几种近年出现的算法进行比较,验证该算法的优越性。
- 杨格兰邓晓军刘琮
- 关键词:情感计算表情识别时空域卷积神经网络
- 时空域深度卷积神经网络及其在行为识别上的应用被引量:24
- 2015年
- 近年来深度卷积神经网络在静态图像识别上取得了较大进展,但在行为视频上建模运动信息的能力较弱。但是,运动信息是行为识别区别于静态图像识别的关键。基于滤波器响应积提出了时空域深度卷积神经网络。该网络先将相邻帧对应的卷积核分为两组,近似地形成傅里叶基函数对,后续的乘法层将不同帧产生的响应两两相乘后再输入加法层求和,从而将相邻帧映射到变换矩阵的特征值对应的不变子空间上,依靠相邻帧在不变子空间上的旋转角度检测它们之间的运动特征。理论分析证明,网络既对运动敏感,又对内容敏感。实验表明,该网络能对行为视频做出更准确的分类,并与近年出现的其他6种算法进行比较,结果体现了本算法的优越性。
- 刘琮许维胜吴启迪
- 关键词:时空域卷积神经网络