李响
- 作品数:2 被引量:5H指数:2
- 供职机构:大连医科大学附属第二医院更多>>
- 发文基金:国家自然科学基金中央高校基本科研业务费专项资金“十一五”国家科技支撑计划更多>>
- 相关领域:医药卫生更多>>
- 基于序贯似然比检验的运动想象脑电信号分类方法研究被引量:3
- 2013年
- 快速准确地对脑电信号进行特征分类是脑-机接口研究的关键问题之一.从人脑决策模型出发,结合自适应小波基特征提取方法,提出了一种基于序贯似然比检验的运动想象脑电信号动态分类方法.该方法在分类中无须预先固定样本量,而是逐次取样,累积分类信息,有利于解决脑-机接口的实时控制问题.为了更好地衡量该方法的有效性,进行了10次10折交叉验证,实验结果表明3个运动想象数据集共8位受试者的平均正确率达到87%以上,互信息和分类时间等指标也表明该方法能够有效提高脑-机接口系统的性能,具有较好的实用性.
- 刘蓉李春月王永轩王媛媛李响
- 关键词:脑-机接口
- 基于极限学习机的左束支传导阻滞辅助诊断研究被引量:2
- 2017年
- 左束支传导阻滞(LBBB)作为临床常见的一种心律失常,是左心室收缩功能减低、患者死亡率增加的标志;利用机器学习算法对其进行辅助诊断,将对LBBB早发现、早治疗起到积极的推动作用。然而,由于目前常用的支持向量机(SVM)等传统的机器学习算法容易产生局部最优解,准确度有待提高,因此提出一种基于极限学习机(ELM)的LBBB辅助诊断算法。首先,利用小波进行心电信号预处理,包括基线漂移、肌电噪声及工频干扰的去除;接着,确定QRS波群与T波位置;然后,根据临床上LBBB患者比正常人的QRS波群持续时间延长等特点,建立融合时域、形态与能量3类特征的特征模型;最后,利用该模型提取的特征集合,提出基于ELM的LBBB辅助诊断算法。此外,在MIT_BIH数据库中的5 000份ECG数据上进行实验验证,结果表明所提出的预处理与波形提取算法能有效去除噪声并提取QRS-T特征波;在LBBB的判别上,相比SVM算法、ELM算法的训练时间缩短了88.5%;同时,在准确率、灵敏度、特异度、LBBB检出率和正常人检出率的指标上,分别提升2.4%、5.4%、1.2%、3.6%和2%。因此,基于ELM的LBBB辅助诊断算法具有明显优势。
- 王之琼吴承暘信俊昌赵越李响
- 关键词:极限学习机左束支传导阻滞机器学习算法特征提取