2025年7月27日
星期日
|
欢迎来到佛山市图书馆•公共文化服务平台
登录
|
注册
|
进入后台
[
APP下载]
[
APP下载]
扫一扫,既下载
全民阅读
职业技能
专家智库
参考咨询
您的位置:
专家智库
>
>
李红兰
作品数:
1
被引量:5
H指数:1
供职机构:
河南牧业经济学院
更多>>
发文基金:
国家科技重大专项
更多>>
相关领域:
电气工程
更多>>
合作作者
刘青凤
安阳工学院计算机科学与信息工程...
作品列表
供职机构
相关作者
所获基金
研究领域
题名
作者
机构
关键词
文摘
任意字段
作者
题名
机构
关键词
文摘
任意字段
在结果中检索
文献类型
1篇
中文期刊文章
领域
1篇
电气工程
主题
1篇
数据挖掘
1篇
涡轮机
1篇
基于数据
1篇
风力
1篇
风力涡轮
1篇
风力涡轮机
机构
1篇
安阳工学院
1篇
河南牧业经济...
作者
1篇
刘青凤
1篇
李红兰
传媒
1篇
计算机测量与...
年份
1篇
2014
共
1
条 记 录,以下是 1-1
全选
清除
导出
排序方式:
相关度排序
被引量排序
时效排序
基于数据挖掘方法的风力涡轮机状态监测技术研究
被引量:5
2014年
目前风力涡轮机的故障模式预测成为了风力发电站发展的重要任务;提出了一种基于数据挖掘算法的涡轮机故障状态预测方法;这种方法包括3个主要的步骤:涡轮机状态抽象,算法训练,状态预测;首先利用先验知识将涡轮机的初始状态进行分类,选择建立预测模型的参数;为了降低计算难度,采用数据挖掘算法进行模型参数的选择;最终采用发电机转速、变速箱速度、温度枢纽、叶片螺距角这些参数进行预测模型的建立;建立预测模型的过程分为3个阶段:预测任意故障;预测系统的特殊故障;确定未知故障;通过对各种数据挖掘算法基于大量风力涡轮机数据的性能分析,选择了性能最优的随机森林算法模型;这种模型的预测准确率能够达到98%;同时还能够预测训练数据没有包含的故障类型;通过在实际风力涡轮机数据的验证,表明了这种模型的稳健性。
刘青凤
李红兰
关键词:
风力涡轮机
数据挖掘
全选
清除
导出
共1页
<
1
>
聚类工具
0
执行
隐藏
清空
用户登录
用户反馈
标题:
*标题长度不超过50
邮箱:
*
反馈意见:
反馈意见字数长度不超过255
验证码:
看不清楚?点击换一张