蛋白质结构预测中,采样是指在构象空间中生成具有最小自由能的状态。传统的采样方法是对自由度直接赋值。这种方法在处理较少的残基时能取得好的效果。但是对于包含100个残基以上的蛋白质结构,由于构象空间的急剧增长,难以得到理想的结构。本文引入深度学习中的HMC(Hybrid Monte Carlo)采样方法,以概率分布为依据对蛋白质的自由度进行采样,能够对包含100、200甚至更多个残基的蛋白质结构进行采样。并且,在采样的过程中加入残基间的距离约束,使得一个结构中,相对于Rosetta的ab initio最多有75%(平均40%)的残基对得到优化,满足距离约束。