冠层温度(canopy temperature,T_(c))是作物水分胁迫计算的基础。准确地剔除热红外图像中的土壤背景,可以提高作物水分的监测精度。该研究以4种水分处理的拔节期夏玉米为研究对象,借助无人机可见光和热红外图像,采用红绿比值指数(red-green ratio index,RGRI)法提取研究区域的面状玉米冠层温度的空间分布信息,并分析每幅热红外图像上冠层温度的累积频率。该并提出了两种改进作物水分胁迫指数(crop water stress index,CWSI)性能的方法,一是使用基于正态分布的不同统计分位数分割冠层温度,并基于不同统计分位数上的平均冠层温度计算CWSI(记为CWSI_(TcF%))。二是基于冠层温度方差(canopy temperature variance,V_(ar)),将玉米冠层数据分为4个区间:区间Ⅰ,T_(c)≤40,V_(ar)≤10;区间Ⅱ,T_(c)≤40,1020;区间Ⅳ,40
为探究作物冠层受阳光直射或阴影遮挡对无人机热红外遥感诊断作物水分胁迫、监测土壤含水率的影响,该研究以不同灌溉处理的夏玉米为研究对象,将热红外图像划分为光照冠层、阴影冠层、光照土壤、阴影土壤4个部分,分别提取光照温度与阴影温度后计算了11:00、13:00、15:00的冠气温差(冠层温度与大气温度之差,ΔT)、作物水分胁迫指数(crop water stress index,CWSI)、蒸发比(潜热通量与有效能量的比值,evaporative fraction,EF),并对比了3种指数在不同时刻使用光照温度(ΔT_(L)、CWSI_(L)、EF_(L))与阴影温度(ΔT_(S)、CWSI_(S)、EF_(S))后对土壤含水率的监测效果变化情况。结果表明:1)3种指数的监测效果会随时间发生变化,11:00与15:00时EF监测效果较好,13:00时CWSI监测效果较好,ΔT的监测效果较差但随时间波动最小;2)拔节期在区分光照温度与阴影温度后监测效果在11:00时提升幅度最大,EF、EF_(S)、EF_(L)的R^(2)分别为0.54、0.65、0.78,CWSI、CWSI_(S)、CWSI_(L)的R^(2)分别为0.47、0.64、0.70,抽雄期与灌浆期使用光照温度对监测效果提升不大,但使用阴影温度的指数监测效果有明显降低,在13:00时CWSIS较CWSI有最大降幅,R^(2)降幅分别为0.11、0.06;3)在拔节期与抽雄期使用11:00的EFL,在灌浆期使用13:00的CWSI能取得最好的土壤含水率监测效果,验证期预测土壤含水率的R2分别为0.75、0.75、0.89。该研究可以为无人机热红外监测土壤含水率提供参考。