刘宇弛
- 作品数:2 被引量:7H指数:2
- 供职机构:国防科学技术大学信息系统与管理学院更多>>
- 发文基金:国家自然科学基金国家高技术研究发展计划更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于事件的新闻报道分析技术研究进展被引量:3
- 2007年
- 首先给出基于事件的新闻报道分析技术相关概念的定义,并提出一个基于事件的新闻报道分析技术框架;然后从四个方面介绍了基于事件的新闻报道分析中的关键技术,包括事件探测、事件追踪、事件相关文档摘要和事件RSU检索。对一些关键技术进行了分类和评价,剖析其优势及不足,通过对各种方法的分析和比较,提出了一些改进的方法和建议。最后展望了未来基于事件的新闻报道分析技术的发展方向。
- 雷震吴玲达刘宇弛李卓
- 一种基于构建-竞争聚类及KNNFL的事件探测与追踪系统被引量:4
- 2006年
- 一种构建-竞争聚类法被用于事件探测,该方法是受神经网络研究中构建-竞争学习的思想启发的.另外,提出了一种用于事件追踪的基于K近邻特征线(KNNFL)的分类方法,这种基于最近邻特征线(NFL)的方法本质上可以看作是对K近邻(KNN)法的推广,将改进后的KNN融入到NFL中形成KNNFL是为了更适合新闻事件的分析.研究结果表明,本文所提出的方法与传统的增量k均值法、Single-Pass法、Rocchio法以及KNN法相比较,可以获得更好的效果.通过分析可以看到,KNNFL即使在正例样本非常稀少的情况下仍然具有鲁棒性的表现.
- 雷震吴玲达雷蕾刘宇弛