郑成
- 作品数:1 被引量:2H指数:1
- 供职机构:成都理工大学地球物理学院更多>>
- 相关领域:天文地球更多>>
- 细胞神经网络在重力异常分异中的研究及应用被引量:2
- 2015年
- 介绍采用细胞神经网络CNN(cellular neural network)方法,对铬铁矿区内的矿体和围岩的重力异常进行分异。首先阐述了CNN方法的原理和算法,采用拟BP学习算法训练网络的权值,用全局误差函数求导方法推导权值的修正公式,讨论了如何根据目标异常训练适合该地质条件的网络的连接权值;其次将重力异常数据预处理,以达到适合CNN方法处理的数据格式和要求;最后由于该矿区内没有已知的重力数据作为网络训练的目标输出,根据相关地质图设置相应的地下构造模型。利用"点元"法分别正演出叠加异常和矿体异常,进而训练出适合全区的网络连接权值,实现了对全区重力异常的分异。应用结果表明,细胞神经网络方法较好地突出该矿区高异常和矿体的边界,只要选择了合适的网络连接权值,就能将横向叠加异常区分开,故CNN方法可以实现矿体和围岩的重力异常分异。
- 李超江玉乐胡明科蒋亚东郑成
- 关键词:重力勘探细胞神经网络权值