马明洋
- 作品数:3 被引量:42H指数:2
- 供职机构:沈阳农业大学信息与电气工程学院更多>>
- 相关领域:农业科学自动化与计算机技术更多>>
- 东北粳稻叶绿素相对含量的无人机高清影像检测方法被引量:10
- 2017年
- 叶绿素相对含量(soil and plant analyzer development,SPAD)是评价水稻健康状况的重要农学参数,为了解决传统监测方法工作量大,效率低的问题,以东北粳稻为研究对象,采用不同施肥处理开展小区试验,利用无人机低空遥感技术分别获取水稻分蘖期、拔节孕穗期、抽穗灌浆期水稻冠层高清数码影像,同时利用叶绿素仪测量水稻冠层SPAD值,并对无人机高清数码影像反演SPAD的可行性及方法进行研究。结合k-means聚类和阈值分割的方法去除背景提取出水稻叶片的RGB值,构建出R、G、B及G/R、G/B、B/R、R-B、G-R、NRI、NGI、NBI共11种颜色参数,并分别用11种参数和水稻叶片SPAD做相关性分析,分析结果表明NRI、B/R、R-B 3种参数和SPAD值高度相关。分别采用一元线性回归分析法和BP神经网络法对3种参数和SPAD的关系进行建模并对建模精度进行分析。结果表明:无人机高清影像反演SPAD是可行的,其中一元线性回归分析中,NRI和SPAD的建模精度高于B/R和R-B,均方根误差(RMSE)为1.51;基于NRI、B/R和R-B的多特征输入的BP神经网络预测粳稻SPAD的RMSE为1.354,相比基于NRI的一元线性回归分析模型精度提升11%,BP模型能较好地对东北粳稻的SPAD进行反演,能为无人机低空遥感反演粳稻SPAD提供理论依据和实现方法。
- 马明洋许童羽周云成于丰华苗腾马航
- 关键词:无人机神经网络数码影像叶绿素相对含量
- 基于叶片尺度的东北粳稻产量估测
- 2017年
- 及时准确地估测水稻产量是服务现代农业的重要内容,对制定科学的粮食政策具有重要的现实意义。本研究以东北粳稻为例,利用试验区粳稻叶片植被指数归一化差值植被指数(NDVI)和光化学植被指数(PRI)估测粳稻产量。基于2015年粳稻生长关键期6-9月的叶片NDVI和PRI,结合试验小区产量数据,建立了基于试验区叶片NDVI和PRI的粳稻产量估算模型。单月NDVI与产量一元线性模型的R^2范围为0.455~0.581,平均估产精度为96.36%。单月PRI与产量一元线性模型的R^2范围为0.396~0.709,平均估产精度为96.68%。单月NDVI和PRI复合估产二元线性模型的R^2范围为0.655~0.784,平均估产精度为97.26%。利用不同月份组合的NDVI累积和与PRI累积和建立的粳稻产量模型R^2范围为0.765~0.949,估产精度均在97.48%以上。所建参数模型中拟合效果最好的是6月、8月、9月NDVI累积和与PRI累积和复合的估产模型,R^2为0.949,估产精度高达98.82%,此模型可作为粳稻估产的一种参考模型。
- 马航陈春玲许童羽于丰华马明洋郭雷
- 关键词:NDVIPRI估产
- 粳稻多旋翼植保无人机雾滴沉积垂直分布研究被引量:32
- 2017年
- 为研究多旋翼植保无人机低空喷施作业过程中,水稻垂直方向雾滴沉积的分布规律,在水稻冠层叶片、中部叶片、底部叶片分别放置了雾滴测试卡,收集植保无人机喷洒过程中的雾滴信息。使用清水代替农药来模拟喷施过程,利用雾滴沉积分析软件i DAS分析雾滴测试卡,得出植保无人机雾滴在水稻垂直方向的分布结果。试验结果表明:植保无人机低空喷雾在水稻垂直方向的雾滴覆盖率存在显著差异,有效喷幅内旋翼下方区域的雾滴覆盖效果最好,而远离旋翼的位置,雾滴覆盖率较差。从水稻垂直方向的不同位置分析,雾滴总体覆盖率为冠层54.86%,中部32.69%,底部24.7%;水稻垂直各位置的粒径分布中,平均粒径范围处于110~140μm之间,粒径大小适合植物病虫的防治。冠层的点密度最大,而水稻中间部位和水稻底部的点密度分布较为相似;水稻中部雾滴扩散比(0.465)优于冠层(0.38)和底部(0.31),整体喷雾的雾滴扩散比与相对粒谱宽度的数值均低于正常值(0.67)。
- 许童羽于丰华于丰华曹英丽马明洋
- 关键词:雾滴沉积粳稻