为提高噪音人脸图像分类问题中的抗噪性能,在综合最小类内方差支持向量机(minimum class variance support vector machines,MCVSVMs)和总间隔v-支持向量机(total margin v support vector machine,TM-v-SVM)的优点的基础上,提出了基于公共矢量的总间隔v最小类内方差支持向量机(Total margin v minimum class variance support vector machines based on common vectors,TM-v-M(CV)2SVMs)。受公共矢量(commonvectors,CVs)的启发,引入了散度矩阵以进一步提高算法的分类性能和抗噪性能,并给出了TM-v-M(CV)2SVMs的推导过程。经实验证明,在噪音人脸图像的分类问题中,TM-v-M(CV)2SVMs获得了比MCVSVMs和TM-v-SVM更好的分类性能和抗噪性能。