马先兵
- 作品数:4 被引量:24H指数:2
- 供职机构:三峡大学计算机与信息学院智能视觉与图像信息研究所更多>>
- 发文基金:国家自然科学基金湖北省教育厅青年基金湖北省高等学校优秀中青年科技创新团队计划项目更多>>
- 相关领域:自动化与计算机技术更多>>
- 视错觉及其应用被引量:6
- 2012年
- 视觉是人类获取外部信息的最重要方式。但由于人类自身的生理、心理因素以及外界光、形、色等因素的干扰,会产生视觉误差,即视错觉。本章系统的分析了视错觉产生原因,按不同的现象和成因把视错觉分成病理视错觉、动态视错觉、几何视错觉、颜色视错觉、轮廓错觉等5类。在此基础上介绍了视错觉的应用,特别介绍了其在图像融合中的应用,并用matlab实现了图像的融合。
- 马先兵孙水发夏平龚国强
- 关键词:视错觉心理学生理学图像融合
- 基于粒子滤波的on-line boosting目标跟踪算法被引量:1
- 2013年
- 基于Haar-like特征的on-line boosting跟踪算法(HBT)把目标跟踪看作是目标与背景的二分类问题,通过在候选区域搜索最大分类置信度的方法得到目标新的位置。但在获取最大置信度时选用的是区域穷举搜索法,当目标过大或者运动速度过快时,很难确保系统的实时性,且易造成跟踪丢失。本文将粒子滤波算法引入HBT目标跟踪框架中,通过建立目标运动模型,并把HBT目标分类置信度与粒子滤波的观测模型结合起来,提出了基于粒子滤波的on-line boosting目标跟踪算法(PFHBT)。与HBT算法相比,本文算法不仅加快了计算速度,而且很好地解决了目标速度过快造成跟踪丢失的问题,保证了系统的实时性和鲁棒性。
- 马先兵孙水发覃音诗郭青夏平
- 关键词:BOOSTING粒子滤波
- 基于多特征级联筛查的在线boosting快速跟踪算法被引量:1
- 2015年
- 传统基于Haar-like特征的在线boosting跟踪算法(HBT)采用局部穷举搜索目标的方式,不能很好地应对运动速度较快的目标以及目标被完全遮挡的情形。当目标状态和周围背景发生变化时,传统HBT算法会产生累积错误。对此系统进行改进,提出一种基于多特征级联筛查的在线boosting快速跟踪算法:将每帧视频网格化,依次根据目标运动方式、网格方差、目标模型、颜色分布以及重叠情况等多种特征级联筛选出有可能成为目标的网格。将这些候选网格交给boosting分类器得到最终的置信度,从而得到目标位置信息,实现快速的在线目标跟踪。用朴素贝叶斯分类器代替简单的阈值分类器,提高算法的准确性。实验结果表明,所提出的方法在鲁棒性、准确性和实时性上都有很大提升。
- 胡松孙水发马先兵覃音诗雷帮军
- 关键词:目标跟踪颜色直方图
- 室外视频前景检测中的形态学改进ViBe算法被引量:16
- 2013年
- 背景差分法是实际中应用最广泛的前景检测方法,其关键是背景建模,比较常用的背景建模方法是高斯混合模型GMM(Gaussian Mixture Model)。最近一种称为视觉背景抽取算法ViBe(Visual Background extractor)由于其简单、快速的特点得到了越来越多的重视。但对于存在动态背景的户外视频,仍然存在噪声及背景的干扰。提出用形态学方法对算法进行改进,即先用开操作来消除噪声,再用闭操作来填充物体内细小空洞等。用ROC曲线测试了算法性能,结果表明,进行形态学处理后算法性能有了比较大的提高,比如对于户外视频Watersurface,在FPR为1%时TPR最高提高了31%。
- 孙水发覃音诗马先兵雷帮军
- 关键词:形态学处理ROC曲线