刘晓欣
- 作品数:3 被引量:44H指数:3
- 供职机构:大连理工大学电子信息与电气工程学部更多>>
- 发文基金:国家自然科学基金更多>>
- 相关领域:自动化与计算机技术理学电子电信更多>>
- 基于Copula熵的互信息估计方法被引量:14
- 2013年
- 互信息是一种常用的衡量变量相关性的方法,但在互信息估计过程中,联合概率密度的估计往往十分困难.为了避免联合概率密度的估计,同时有效提高互信息估计的准确度与效率,本文提出一种基于Copula熵的互信息估计方法.利用Copula熵与互信息之间的关系,将互信息的估计转化为对Copula熵值的估计.采用基于Kendall秩相关系数的参数估计方法对Copula函数的参数进行估计.所提算法分别与直方图法、核方法、k近邻法和极大似然法进行比较.二维高斯数据上的仿真结果表明,所提方法能够快速准确地对互信息值进行估计.
- 韩敏刘晓欣
- 关键词:互信息COPULA概率密度函数参数估计
- 基于互信息的分步式输入变量选择多元序列预测研究被引量:21
- 2012年
- 针对多元序列分析中存在的输入变量选择问题,提出一种基于k-近邻互信息估计的分步式变量选择算法.该算法通过两步过程分别实现相关变量的选择与弱相关变量的剔除.同时将分步变量选择算法应用于径向基函数(Radial basis function,RBF)神经网络结构的优化中.在K均值聚类的基础上,通过分析隐含层神经元的输出权值与神经网络输出的相关性,对隐含层节点进行选择,改进网络的结构与性能.Friedman数据的仿真实验验证了分步变量选择算法的有效性;Gas furnace多元时间序列以及Boston housing数据的仿真结果表明,优化后的RBF网络能够在保证模型精度的基础上有效控制网络规模.
- 韩敏刘晓欣
- 关键词:互信息径向基函数网络
- 一种基于互信息变量选择的极端学习机算法被引量:9
- 2014年
- 针对回归问题中存在的变量选择和网络结构设计问题,提出一种基于互信息的极端学习机(ELM)训练算法,同时实现输入变量的选择和隐含层的结构优化.该算法将互信息输入变量选择嵌入到ELM网络的学习过程之中,以网络的学习性能作为衡量输入变量与输出变量相关与否的指标,并以增量式的方法确定隐含层节点的规模.在Lorenz、Gas Furnace和10组标杆数据上的仿真结果表明了所提出算法的有效性.该算法不仅可以简化网络结构,还可以提高网络的泛化性能.
- 韩敏刘晓欣
- 关键词:极端学习机互信息