以江汉平原滨湖地区不同土地利用类型的土壤样本为例,比较了基于目标土壤理化性质的浓度梯度法、扩展的基于多种理化性质的综合法(P-KS)、基于光谱信息的KS法、最邻近样本去除法(reduce nearest neighbor samples,RNNS)法和基于浓度分层并结合光谱信息的C-KS、C-RNNS法,基于地类分层再结合上述方法,构建具有不同层次土壤信息代表性的校正集,采用偏最小二乘回归法,建立土壤有机质可见光/近红外光谱反演模型。结果表明,具有单一代表性的浓度梯度法、KS法、RNNS法难以建立适用模型;具有光谱与理化性质二元代表性的C-KS方法模型预测精度得到了明显的提升,相对分析误差(ratio of performance to standard deviation,RPD)为1.66;考虑土地利用类型后,浓度梯度法、RNNS法与C-KS法模型预测精度有明显的提升,RPD分别达到了1.84、1.51、1.75,模型具有良好的适用性。说明具有多层次土壤信息代表性的校正集构建方法对提高土壤有机质可见光/近红外光谱反演模型的适用性具有较好作用。
传统线性回归模型在借助光谱信息进行土壤属性预测时,通常忽略了土壤自身所具有的空间异质性和依赖性,并且未考虑模型残差的空间结构。针对以上不足,该文以江汉平原232个土壤样本为研究对象,以土壤反射光谱为辅助变量,采用偏最小二乘回归、普通克里格、协同克里格以及回归克里格分别构建土壤有机碳密度预测模型,选取决定系数(R^2)、均方根误差、标准差与预测均方根误差比(ratio of performance to deviation,RPD)对模型预测精度进行对比评价。结果显示,结合高光谱信息,且同时考虑残差空间结构的回归克里格模型表现优于其他模型,预测决定系数R^2为0.617,RPD为1.614。鉴于土壤光谱信息同时还具有测定简单、省时、无损等优点,因此土壤光谱是土壤有机碳密度空间插值的理想辅助因子。