我国目前滑坡易发性评价研究主要集中在西南地区,对东南部降雨引发特别是梅雨引发的滑坡研究较少.选取浙江省西北部梅雨控制区淳安县为研究区,通过遥感解译结合野外详细调查,共确定滑坡596处,并建立滑坡编录数据库.选取高程、坡向、坡度、曲率、工程岩组、断层、道路、建设用地、植被等9个滑坡影响因子,基于GIS栅格分析方法,采用人工神经网络(ANN)、logistic回归和信息量3种评价模型,分别对32种不同影响因子组合进行滑坡易发性对比评价,得到滑坡易发性指数图.应用评价曲线下面积AUC(area under curve)对评价结果进行检验,ANN、logistic回归和信息量3种模型的正确率分别是93.75%、89.76%和90.06%;采用淳安县2014年梅汛期发生的13处滑坡作为预测样本,3种模型预测率分别是94.75%、94.33%和77.21%.上述分析结果表明:ANN模型优于其他两者.以ANN模型评价结果指数图为基础进行易发性分区,采用滑坡强度指标进行分区结果检验,滑坡强度值由易发性低、较低、中和高依次递增,说明分区结果合理.研究成果可以为浙西降雨型滑坡特别是由梅雨引发滑坡的易发性评价提供参考.