The photodissociation dynamics of 2-iodotoluene following excitation at 266 nm have been investigated employing femtosecond time-resolved mass spectrometry. The photofragments are detected by multiphoton ionization using an intense laser field centered at 800 nm. A dissociation time of 3804-50 fs was measured from the rising time of the co-fragments of toluene radical (C7H7) and iodine atom (I), which is attributed to the averaged time needed for the C-I bond breaking for the simultaneously excited nσ and ππ* states by 266 nm pump light. In addition, a probe light centered at 298.23 nm corresponding to resonance wavelength of ground-state iodine atom is used to selectively ionize ground-state iodine atoms generated from the dissociation of initially populated hσ* and ππ* states. And a rise time of 4004-50 fs is extracted from the fitting of time-dependent I+ transient, which is in agreement with the dissociation time obtained by multiphoton ionization with 800 nm, suggesting that the main dissociative products are ground-state iodine atoms.