面向农作物产量监测对中高分辨率遥感数据光合有效辐射(photosynthetically available radiation,PAR)反演的实际需求,该文选择山东省禹城市2014年1月至2014年12月共13景GF-1/WFV卫星影像作为数据源,基于中分辨率成像光谱仪(moderate-resolution imaging spectroradiometer,MODIS)地表反射率产品作为辅助数据源,开发了适于业务运行的WFV数据气溶胶光学厚度(aerosol optical depth,AOD)及PAR的反演算法。算法核心是采用6S(second simulation of satellite signal in the solar spectrum)大气辐射传输模型,建立包括AOD在内的大气参数与查找表(look-up table,LUT),结合大气顶层太阳入射辐照度及卫星入瞳处辐射亮度值反演地表反射率数据,通过与WFV蓝光波段地表反射率数据对比获取大气参数。通过反演的大气参数计算400~700 nm连续光谱区间的PAR值,并建立WFV数据离散红、绿、蓝光波段与连续光谱区间PAR的转换系数,实现WFV数据PAR的反演。其中,WFV蓝光波段反射率数据与MODIS地表反射率数据关系、离散到连续谱段PAR的关系可以从美国地质勘探局(United States Geological Survey,USGS)提供的典型地物波谱库数据理论计算获取。利用中国生态系统研究网络(chinese ecosystem research network,CERN)禹城站地面观测值进行验证结果表明,该文提出的算法总体精度达到92.63%,平均绝对误差为14.56 W/m^2,平均相对误差7.37%,具有业务应用的潜力。
高分一号(GF-1)卫星是中国高分系列卫星的首发星,自2013年4月成功发射以来,在中国农业遥感业务工作中得到了广泛应用,已成为中国大宗农作物种植面积遥感监测的主要数据源。该文基于6S(second simulation of a satellite signal in the solar spectrum)辐射传输模型原理,设计并实现了适合于GF-1卫星数据大气校正算法与程序。算法以GF-1卫星1级数据、元数据及传感器公开参数为输入数据,不需要其他外源辅助数据,经过辐射定标,计算各波段平均太阳辐射值、表观反射率,通过选择大气模式,驱动6S模型获取表观反射率转换为地表反射率的参数,逐像元计算影像地表反射率。在算法研制的基础上,应用Fortran和IDL语言编写了大气校正批处理程序,实现了大气校正过程的批处理。该文采用2014年4月3日、6月28日、11月2日,以及2015年1月19日4个时相北京地区GF1卫星WFV(wide field view)数据,分别代表春夏秋冬4个季节,通过与ENVI软件的FLAASH(fast line-of-sight atmospheric analysis of spectral hypercubes)大气校正结果对比进行评估。2种方法 4个时相各波段全年相对偏差为3.26%,蓝光波段偏差最大为11.21%,其次是红、近红和绿光波段,分别为1.19%、0.73%和0.24%。作物覆盖区平均相对误差为12.99%,冬季最高为17.40%,秋季和春季分别为15.02%和14.15%,夏季相对差异最小为8.31%。各波段地表反射率的整体校正情况并未有太大差异,但6S校正后各波段反射率普遍比FLAASH校正结果略微偏高。2种校正结果计算的NDVI也基本一致,相对偏差0.64%;除水体外,绝对值差值的平均值均在0.0548以内。从计算效率来分析,6S模块实现了商用软件FLAASH模块中未提供的批量计算,在相同硬件环境下计算效率提高了75.0%以上。研究结果表明了该文开发的大气校正程序能够稳定批量处理GF-1卫星数据,可以作为农业遥感监测业务流程的组成部分。
2013年4月成功发射的GF-1卫星是中国高分系列卫星的首发星,影像在中国农情遥感监测业务中得到了广泛应用,已成为大宗农作物种植面积遥感监测的主要数据源之一。高精度几何位置的配准是卫星农情定量化应用的基础与前提,该文提出了一种基于区域网平差方法修正GF-1卫星WFV(wide field view,WFV)影像RPC(rational polynomial coefficients,RPC)参数,获取更高几何定位精度的校正方法,形成了模式化的业务处理流程,为该影像在农情遥感监测中的应用奠定了基础。算法流程包括2个部分,首先是基于像面间仿射变换关系及有理多项式RFM(rational function model,RFM)模型构建轨道间的区域网平差数学模型,其次是根据影像连接点及少量控制点输入求解所有参与平差的卫星影像定向参数,获取亚像元级的校正结果。平差参数的解算是通过两步求解完成的,初始平差参数是根据连接点及对应的DEM高程值进行平差迭代至收敛,结果平差参数是将初始平差参数作为初始值代入区域网平差模型,并以逐点消元方式约化法方程,解算出各影像的仿射变换参数。该文在求解平差参数过程中,直接使用DEM(digital elevation model)上获取的高程值作为约束条件,消除了平面坐标与高程的相关性,保证了区域网平差模型能够解算。混合地形、平原、山区3种情况下区域网平差结果表明,全连接点平差结果具有较高的相对定位精度,其行方向的中误差分别为0.3046、0.4674、0.3365像元,列方向的中误差分别为0.3677、0.2849、0.2889像元;而结合少量控制点的区域网平差则同时具有很高的绝对定位精度,其行方向的中误差分别为0.3648、0.5041、0.3605像元,列方向的中误差分别为0.4954、0.4039、0.6323像元,整体达到了亚像素级。最后,在农业应用基础控制底图的支持下,分别对原始影像、RPC校正影像、区域网平差后的影像进行几何配准,�