珠江口盆地A区自由界面多次波是影响该区最终成像效果的主要原因之一。通过SWMA(Shallow Water Multiple Attenuation)或SRME(Surface Related Multiple Elimination)对自由界面多次波进行压制,此类多次波在一定程度上得到了压制,但是剖面上仍有残留多次波。经分析,SWMA、SRME在压制自由界面多次波时各有长处,但也有一些缺点。SRME对数据本身及采集假设条件要求较高,使自由界面多次波衰减后有残留;而SWMA针对水层间振荡的多次波而设计,对自由界面中部分海平面相关的多次波不能衰减。这里采用SWMA与SRME组合技术在珠江口盆地A区衰减自由界面多次波,克服了上述单独应用SWMA或SRME压制多次波的缺点,取得了较好的压制自由界面多次波效果。
Simultaneous prestack inversion is based on the modified Fatti equation and uses the ratio of the P- and S-wave velocity as constraints. We use the relation of P-wave impedance and density (PID) and S-wave impedance and density (SID) to replace the constant Vp/Vs constraint, and we propose the improved constrained Fatti equation to overcome the effect of P-wave impedance on density. We compare the sensitivity of both methods using numerical simulations and conclude that the density inversion sensitivity improves when using the proposed method. In addition, the random conjugate-gradient method is used in the inversion because it is fast and produces global solutions. The use of synthetic and field data suggests that the proposed inversion method is effective in conventional and nonconventional lithologies.