We previously functionally characterized a novel marine microbial GDSL lipase MT6 and identified that the stereo-selectivity of MT6 was opposite to that of other common lipases in trans-esterification reactions.Herein,we have investigated the use of MT6 in stereo-selective biocatalysis through direct hydrolysis reactions.Notably,the stereo-selectivity of MT6 was also demonstrated to be opposite to that of other common lipases in hydrolysis reactions.Parameters,including temperature,organic co-solvents,pH,ionic strength,catalyst loading,substrate concentration,and reaction time,affecting the enzymatic resolution of racemic 1-phenylethyl acetate were further investigated,with the e.e.of the final(S)-l-Phenylethanol product and the conversion being 97%and 28.5%,respectively,after process optimization.The lengths of side chains of 1-phenylethyl esters greatly affected the stereo-selectivity and conversion during kinetic resolutions.MT6 is a novel marine microbial GDSL lipase exhibiting opposite stereo-selectivities than other common lipases in both trans-esterification reactions and hydrolysis reactions.