流早期分类对于优化网络管理和确保服务质量(Quality of Service, QoS)至关重要。针对传统流特征在流早期分类中性能较低的问题,在现有研究基础上,提出了两种新的特征:一是通过等距分箱划分包大小等级,计算相邻到达的两个数据包的包大小等级条件频度;二是通过将包大小序列和包到达时间间隔对应相除,得到速率序列,并计算该序列的统计特征作为分类特征。同时,考虑到早期分类的实时性要求,分析了流特征计算的时间复杂性,在特征选择中优化了时间和准确性之间的平衡。另外,针对网络视频流量占比较大的情况,提出了一种层级分类结构;先使用较少的数据包进行non-video/video的二分类,再使用后续的数据包,进行non-videos和videos的细粒度分类。采用随机森林在两个实际网络数据集上进行分类性能测试,并与文献方法进行比较,验证了该方法在快速流量分类中的优越性。
Some factors influencing the intelligibility of the enhanced whisper in the joint time-frequency domain are evaluated. Specifically, both the spectrum density and different regions of the enhanced spectrum are analyzed. Experimental results show that for a spectrum of some density, the joint time-frequency gain-modification based speech enhancement algorithm achieves significant improvement in intelligibility. Additionally, the spectrum region where the estimated spectrum is smaller than the clean spectrum, is the most important region contributing to intelligibility improvement for the enhanced whisper. The spectrum region where the estimated spectrum is larger than twice the size of the clean spectrum is detrimental to speech intelligibility perception within the whisper context.