2025年1月15日
星期三
|
欢迎来到佛山市图书馆•公共文化服务平台
登录
|
注册
|
进入后台
[
APP下载]
[
APP下载]
扫一扫,既下载
全民阅读
职业技能
专家智库
参考咨询
您的位置:
专家智库
>
>
刘扬
作品数:
1
被引量:9
H指数:1
供职机构:
中国科学院自动化研究所
更多>>
发文基金:
国家自然科学基金
国家高技术研究发展计划
更多>>
相关领域:
自动化与计算机技术
更多>>
合作作者
卢汉清
中国科学院自动化研究所
李宏伟
中国科学院自动化研究所
作品列表
供职机构
相关作者
所获基金
研究领域
题名
作者
机构
关键词
文摘
任意字段
作者
题名
机构
关键词
文摘
任意字段
在结果中检索
文献类型
1篇
中文期刊文章
领域
1篇
自动化与计算...
主题
1篇
核方法
1篇
高斯
1篇
高斯过程
1篇
半监督学习
机构
1篇
中国科学院自...
作者
1篇
李宏伟
1篇
卢汉清
1篇
刘扬
传媒
1篇
自动化学报
年份
1篇
2009
共
1
条 记 录,以下是 1-1
全选
清除
导出
排序方式:
相关度排序
被引量排序
时效排序
结合半监督核的高斯过程分类
被引量:9
2009年
提出了一种半监督算法用于学习高斯过程分类器,其通过结合非参数的半监督核向分类器提供未标记数据信息.该算法主要包括以下几个方面:1)通过图拉普拉斯的谱分解获得核矩阵,其联合了标记数据和未标记数据信息;2)采用凸最优化方法学习核矩阵特征向量的最优权值,构建非参数的半监督核;3)把半监督核整合到高斯过程模型中,构建所提出的半监督学习算法.该算法的主要特点是:把基于整个数据集的非参数半监督核应用于高斯过程模型,该模型有着明确的概率描述,可以方便地对数据之间的不确定性进行建模,并能够解决复杂的推论问题.通过实验结果表明,该算法与其他方法相比具有更高的可靠性.
李宏伟
刘扬
卢汉清
方亦凯
关键词:
高斯过程
半监督学习
核方法
全选
清除
导出
共1页
<
1
>
聚类工具
0
执行
隐藏
清空
用户登录
用户反馈
标题:
*标题长度不超过50
邮箱:
*
反馈意见:
反馈意见字数长度不超过255
验证码:
看不清楚?点击换一张