[Objective] The aim was to explore the response of different maize vari- eties in Guangxi to drought stress and re-watering at tasseling stage, so as to pro- vide reference for study on drought resistance mechanism, breeding of drought-re- sistant varieties and selection of maize varieties for fall sowing. [Method] At the tasseling stage, total five degrees of drought stress (4, 8, 12, 16 and 20 d) and corresponding re-watering after drought stress were simulated by a tub planting ex- periment in greenhouse for five different maize varieties (Guidan 0810, Dika 008, Zhengda 619, Chenyu 969, Guidan 901). Normal watering was set as the control. Sampling was carried out on Day 1 after drought stress and on Day 15 after re- watering, and the secondary root number, maximum root length, green leaf number, root dry weight and shoot dry weight were measured. At the harvest time, the ear yield per plant was measured. With yield as the basis, the drought resistance coef- ficient and drought resistance index were calculated. Cluster analysis was conducted for drought resistance coefficient. [Result] The shoot dry weight, root dry weight, secondary root number, maximum root length and green leaf number of maize in the treatment groups decreased compared with those in the control group. The ratio of each index between the treatment and control groups declined with the extension of drought stress. After re-watering, the re-growth amount of each index all de- creased as the stress time prolonged. Post-re-watering over compensation effect oc- curred in none of the indices except the maximum root length, after 4 days of drought stress. Under drought stress, the reductions of all the indices of Guidan 0810, Dika 008 and Zhengda 619 were smaller than those of Chenyu 969 and Guidan 901. After re-watering, the re-growth abilities of Guidan 0810, Dika 008 and Zhengda 619 were stronger than those of Chenyu 969 and Guidan 901. The drought resistance coefficients and drought resistance indexes of Guidan 0810, Dika 008 and Zhengda
Elite maize hybrid Guidan0810 was selected as material, and the effects of fertilizing level and planting densities on yield and nitrogen utilization were dis- cussed in the study. In field experiments as per double-cropping system, 4 main plots (fertilization levels) and 6 subplots (planting densities) were set in a split plot design. The results suggested that yield had close relationship with fertilization levels and planting densities. Different fertilization levels and planting densities significantly affected yield. With the increase of nitrogen fertilization, nitrogen use efficiency, nitrogen agronomic efficiency and nitrogen physiological efficiency declined. Under the same fertilization level, nitrogen use efficiency, nitrogen agronomic efficiency and nitrogen physiological efficiency grew a little with the increase of planting density, so nitrogen efficiency could be improved by regulating planting density. The results also showed that A2 (including N 225.0 kg/hm2, P205 75.0 kg/hm^2, K20 187.5 kg/hm^2) matching to B3 (52 500 plants/hm^2) or B4(60 000 plants/hm^2) was a better design, which could obtain a higher yield in the range of 7 913.2-8 207.8 kg/hm2, respectively.