组卷算法是题库系统的核心,现基于随机选题的数学模型设计并实现了一种优化、可行的组卷策略;并采用ADO(ActiveX Data Objects)技术实现题库中对于图像和数学公式的存取问题;基于C++ BUILDER平台开发了高校计算机专业基础课程的题库管理与组卷系统,该系统在实际教学环境下运行取得了良好的效果。
当前社区发现算法主要是针对无向图研究社区结构,但在实际复杂网络中,链接关系时常表现出非对称性或方向性,比如Twitter的用户关注关系,文献网络的引用关系,网页之间的超链接关系等应用网络。因此,本文依据信息在复杂网络中的传播规律和流动方向性,提出了k-Path共社区邻近相似性概念及计算方法,用于衡量结点在同一社区的相似性程度,并给出了把有向图转换为带方向权值的无向图的方法。基于带权无向图提出了一种从局部扩展来探测社区的重叠社区发现算法(Local and wave-like extension algorithm of detecting overlapping community,LWS-OCD)。在真实数据集上的实验表明,共社区邻近相似性概念实现了有向到无向的合理转换,而且提高了社区结点的聚集效果,LWSOCD算法能够有效地发现带权无向图中的重叠社区。
网络链接预测能够获取网络中丢失链接的重要信息或进行网络的动态演变分析.现有的基于节点相似性的网络链接预测方法往往针对简单的一(多)阶邻居信息或特定类型的小型网络,设计较为复杂的计算方法,其扩展性和大规模网络中的可计算性都受到了严峻的挑战.文中基于深度学习在神经网络语言模型中应用的启发,提出了一个LsNet2Vec(Large-scale Network to Vector)模型.通过结合随机游走的网络数据集序列化方法,进行大规模的无监督机器学习,从而将网络中节点的结构特征信息映射到一个连续的、固定维度的实数向量.然后,使用学习到的节点结构特征向量,就可以迅速计算大规模网络中任意节点之间的相似度,以此来进行网络中的链接预测.通过在16个大规模真实数据集上和目前的多个基准的最优预测算法对比发现,LsNet2Vec模型所得到的预测总体效果是最优的:在保证了大规模网络中链接预测计算可行性的同时,于多个数据集上相对已有方法呈现出较大的AUC值提升,最高达8.9%.