近些年很多基于深度学习的推荐模型被提出,这些模型通过对特征的处理和改变深度网络结构来解决推荐系统数据稀疏和冷启动的问题.然而现有的方法忽略了特征与特征之间的交互对深度网络的影响,限制了模型的学习能力.为了给用户推荐更感兴趣的项目和信息,本文提出了分解机深度网络(Factorization Machine Deep Network,FMN)模型.该模型将因式分解机和深度神经网络结合,首先利用因式分解机在特征之间进行交互以充分学习交叉项特征,然后利用深度网络学习高阶非线性特征.进而,分解机深度网络将特征的隐藏信息充分发掘出来并拥有高阶的非线性特征学习能力.两个真实数据集的实验表明,本文提出的模型在推荐性能上有着明显的提升.
基于矩阵分解的推荐方法易受到数据稀疏性问题的影响,常见的解决办法是向矩阵分解模型中融入评论文本信息,但是这类方法通常假设用户是独立存在的,忽略了用户之间的社交关系.现实世界中用户的行为与喜好往往会受到其信任好友的影响,因此本文提出一种融合评论文本和社交网络的矩阵分解推荐方法(Review and social probabilistic matrix factorization,RSPMF).首先设计了深度神经网络模型用于学习评论文本的上下文特征;其次,设计了信任传播模型用于根据社交好友的特征修正用户的潜在隐特征;最后将上述两种模型以正则化方式融入概率矩阵分解模型,通过训练模型获取用户与物品之间的内在关系并实现物品推荐.在公开的真实数据集Yelp上进行了实验,并与多种前沿的算法进行了性能对比,结果表明本文提出的RSPMF方法具有良好的推荐性能.
针对蝴蝶优化算法存在寻优精度低、易陷入局部最优等问题,文章提出了一种基于黄金正弦算法的自适应蝴蝶优化算法(Adaptive Butterfly Optimization Algorithm with Golden Sine Algorithm,AGSBOA)。首先使用了自适应惯性权重,提高算法跳出局部最优的能力。然后在局部搜索中加入了黄金正弦的搜索策略,提高算法的寻优精度。通过14个函数的仿真实验对比,结果表明优化后的AGSBOA有更好的收敛速度、寻优精度和稳定性。