[Objective] This study aimed to investigate the characteristics of lead accu- mulation in rice aboveground organs under lead pollution and construct hyperspectral identification models. [Method] Pot experiments were conducted to investigate the characteristics of lead accumulation in rice aboveground organs and the quantitative relationship between canopy spectral characteristics and plumbum (Pb) concentrations in various rice organs under different lead levels with experimental materials Nanjing 44 and Liangyoupeijiu. [Result] Pb contents in whole plants, stems, leaves and spikes of Nanjing 44 and Liangyoupeijiu were increasing with the raised Pb levels, Pb content was the highest in stems. Significant differences were observed in the wavelength band of red light in canopy reflectance spectra curves under various Pb stress levels. With the increasing of Pb stress level, the strength of spectral reflectance reduced, and the normalized value of reflectance after removing envelopes curved increased. Several types of relationship models between NVDI(x) and Pb con- tent in rice organs were constructed. By comparing the prediction significance of these models, optimal prediction models were constructed for Pb stress remote- sensing monitoring in various organs of Nanjing 44 and Liangyoupeijiu, respectively. Specifically, Pb contents in various organs of Nanjing 44 were defined as: Ywhole-plant= 2 270.4x^2-2 292.8x+577.35, ystem=4 260.9x^2-4 294x+1 077.8, Yleat=2 780.8x^2-2 777.9x+ 690.71, yspike=309.31X^2-306.07X+75.369; while for Liangyoupeijiu, ywhole-plant=524 269e^-25.557x, ystem=1E+07e^-31.65x, yleaf=2E+07e^-34.056x, yspike=14 320e^-21.756x.[Conclusion] The field hyperspectral remote-sensing responded fairly well to Pb stress of rice plants and the stress intensity. Therefore, fast and undamaging probe of Pb pollution of rice could be achieved by the difference analysis of rice canopy spectra.