Aim To synthesize protected aminoalkyl sulfinyl dilactones which were useful as the synthetic intermediates or the Cterminal pharmacophores of potential peptidomimetic proteasome inhibitors. Methods Organic reactions such as reduction, oxidation, olcfmation, and dihydroxylation were used. Results A convenient synthetic procedure to afford a series of aminoalkyl sulfinyl.dilactones was presented, which would be useful in the synthesis of five- or six-member sulfmyl dilactones. Conclusion Four aminoalkyl sulfmyl dilactones connecting different α-amino acids were synthesized.
A series of β-secretase peptidomimetic inhibitors with Leu*Ala hydroxyethylene dipeptide isostere were synthesized and their β-secretase inhibitory activities were measured. The most potent compound N9 showed an inhibitory rate of 59.66% (10 mg/mL). Compound N9 might be further modified by means of computational chemical methodology.
To find a reasonable way to prepare the designed CPP32 inhibitors. Method Ugifour-component condensation reaction was used to synthesize peptide mimic CPP32 inhibitors; ResultsA key isocyanide component (aspartate-derived isocyanide 3) and one of the designed CPP32inhibitors 4 (as a template) were synthesized; Conclusion The CPP32 inhibitor 4 was synthesized bythe newly developed procedure, which is an Ugi four-component condensation reaction based onaspartate-derived isocyanide 3. This method can be used to build up the CPP32 inhibitor library.
A series of acyclic analogs of natural product Syringolin A (SylA) were designed and synthesized during our synthetic efforts for SylA. These acyclic analogs were prepared through a seven-step linear strategy, with total yields varying from 20%-34% for one type of analogs and 12%-18% for the other. These compounds bear a common structure of peptidyl vinyl amide, which reacts irreversibly with the proteasomal active site ThrlO^γ through Michael-type 1,4-addition. Therefore, these acyclic analogs may function the same way as SylA, as potential 20S proteasome inhibitors.