一直以来,射电天文装备不断得到升级和发展,以使其具有更好的观测性能,包括提高数据记录的时间和频率分辨率以及获得更高的接收和记录带宽等.然而与之形成矛盾的是:国际电信联盟(International Telecommunication Union,ITU)仅为射电天文分配了非常有限的频谱资源,导致的后果是射电观测设备不可避免地受到日益增强的非天文信号的影响,后者的来源主要是人类的通信活动和日常生活,这就构成了通常射电天文中所说的射频干扰(Radio Frequency Interference,RFI).射频干扰会降低数据质量甚至导致数据无效,对科学结果的影响越来越严重.对RFI消减的需求进行分析,总结了RFI的特性、抑制和消减的技术和方案,并介绍了一些有代表性的射电望远镜(或阵列)中采用的RFI消减方法;还分析比较了4种常用方案,即预防、预检测、预相关和后相关的优势和不足.对RFI进行准确的识别和标记是减少数据损失从而有效提高数据质量的关键,也是发展RFI消减技术的最终目的.通过研究不难发现,上述4种方案的组合运用将具有更高的实用价值.近几年来,随着高速数字信号处理和高性能计算的迅速发展,依赖大量计算的实时模式下的预检测以及离线模式下从大型望远镜阵列所产生的大规模干涉相关数据中检测RFI已经成为可能.
低频射电望远镜阵列宽视场成像正面临着一系列难点问题,其中最关键的问题是非共面基线效应.它的存在使得忽略w项将导致最终图像出现畸变,且随着视场的增大而加重.综述并剖析了几种w项改正算法及其技术原理,并分析了它们的计算成本和计算复杂度,进而分析比较了它们的优缺点.以平方公里阵(Square Kilometre Array,SKA)射电望远镜第1阶段低频阵列为研究对象,选取faceting和w-projection成像算法进行了仿真实验.与传统的二维傅立叶变换成像算法进行对比,分析了它们的成像质量和正确性,结果表明这两种算法在宽视场成像方面均明显优于二维傅立叶变换方法.还具体分析了分面(facet)的数目对faceting成像质量和运行时间的影响,以及w步数对w-projection成像质量和运行时间的影响,表明facet数目和w步数的选择必须合理.最后,分析了数据量大小对这两种成像算法运行时间的影响,表明这两种算法在进行海量数据处理前,需要作算法优化改进.研究结果为后续进一步综合分析宽视场成像技术以及这些技术的实用性研究提供了有价值的参考.