为了提高对梅雨锋暴雨过程的预报服务能力,利用常规观测资料、MICAPS天气图和FNL再分析等资料,对2020年7月8—10日梅雨锋连续大暴雨天气过程进行了诊断分析。结果表明:1)这是一次高水汽含量、强低空急流配合短波槽、切变线和梅雨锋天气尺度系统引发的连续大暴雨过程;2)利用FNL再分析资料对过程的水汽、动力、热力条件进行了分析,表明25°~29°N在800 h Pa以下水汽含量丰富,湖南中东部和吉安地区有水汽通量大值区,向东北方向输送水汽并产生明显辐合,且伴有持续的上升运动;3)南昌站的探空CAPE值呈现有利强降水的细长结构,且有明显的能量释放和再建过程;4)稳定天气背景、持续的水汽输送和辐合以及不稳定能量的释放和再建是造成此次连续大暴雨过程的关键所在。研究成果为提高梅雨锋暴雨的预报服务能力提供了参考依据。
基于全球数值预报模式,利用格点同化系统(Grid point Statistical Interpolation system,GSI)将中国区域2170个地面自动气象站进行数据同化,建立了中国区域新的模式初始场,对比了中国区域气温、气压和风速3种气象要素的背景场和初始场特征以及同化后预报效果与欧洲中心再分析数据差异。结果表明:尽管仅仅同化了中国区域的观测数据,但同化后的模式平均偏差、均方根偏差和代价函数均显著降低,表明同化地面观测站资料能有效地降低模式背景场中的气温、气压和风速等基本物理量的误差,使模式的初始分析场和实际观测场更为一致;而在中国区域,3种气象要素的预报中气压的预报效果最好,7个区域气压的相关系数均达0.94以上,且同化后7个区域的相关系数均有提升,东北、华东等区域相关系数高达0.99;各区域气温的相关系数在同化后也略有提高,均方根误差在同化后有所降低,其中华南地区降幅最大,降低了2.3%。相对气压和气温而言,经向风和纬向风同化后改进不大,与再分析数据的相关系数偏小,同时均方根误差较大。其中,华东、西南和华中区域的经向风相关系数低于0.5,东北地区的经向风和纬向风的均方根误差均大于5 m s^(-1)。