高温熔盐泵是钍基熔盐仿真堆(Thorium Molten Salt Reactor-Solid Fuel,TMSR-SF0)一回路系统的关键设备,设计温度高达700°C,其结构完整性对反应堆安全运行至关重要。针对TMSR-SF0高温熔盐泵泵罐初始平封头设计方案应力过大问题,提出了三角形、单井形及双井形三种筋板优化方案,研究了筋板间距对双井方案泵罐应力的影响,制定了泵罐的最终设计方案,按照美国机械工程师协会(American Society of Mechanical Engineers,ASME)标准第III卷第5册对其进行了评定。结果表明:三种方案均可大幅降低泵罐应力水平,双井方案最优,单井方案次之,三角形方案最差;泵罐最终设计方案为双井方案,此方案可使泵罐应力由413.4 MPa下降至65.4 MPa,应力降幅高达84.2%,并通过了ASME标准评定。
随着钍基熔盐堆核能系统(Thorium Molten Salt Reactor Nuclear Energy System,TMSR)由实验堆向研究堆、示范堆及商用堆发展,其轴系演变为由液下轴承支承的细长柔性转子结构。高温熔盐泵是钍基核能系统的主要动力部件,是TMSR的心脏设备。熔盐泵的运行稳定性和可靠性取决于液下轴承的支撑特性。本文采用数值模拟对液下轴承进行理论计算分析,并结合试验研究了不同偏心率对液下轴承支撑特性的影响。结果显示:随着转速增大,液下轴承的偏心率不断减小;随着偏心率的增大,液下轴承支撑的正交刚度和阻尼不断增大,交叉刚度和阻尼的数值也不断增大,液下轴承的最小液膜厚度不断减小。当偏心率大于0.6时,由于最小液膜厚度较薄,液下轴承的压力以零和零梯度结束。此时液下轴承在实际运转中存在液膜失效导致液下轴承磨损严重,此结果在试验中得到了验证。本文研究成果为超高温长轴熔盐泵液下轴承的设计提供了理论指导和试验数据支撑。