您的位置: 专家智库 > >

车宏伟

作品数:2 被引量:9H指数:1
供职机构:吉林大学仪器科学与电气工程学院更多>>
发文基金:国家自然科学基金更多>>
相关领域:天文地球轻工技术与工程更多>>

文献类型

  • 1篇期刊文章
  • 1篇学位论文

领域

  • 2篇天文地球
  • 1篇轻工技术与工...

主题

  • 1篇电导
  • 1篇电导率
  • 1篇时间域
  • 1篇主成分
  • 1篇主成分分析
  • 1篇主成分分析法
  • 1篇PC-BAS...
  • 1篇INVERS...
  • 1篇TIME-D...
  • 1篇ELECTR...
  • 1篇CONDUC...
  • 1篇AIRBOR...

机构

  • 2篇吉林大学

作者

  • 2篇车宏伟
  • 1篇于生宝
  • 1篇马铭遥
  • 1篇嵇艳鞠
  • 1篇朱凯光
  • 1篇林君

传媒

  • 1篇Applie...

年份

  • 2篇2012
2 条 记 录,以下是 1-2
排序方式:
PC-based artif icial neural network inversion for airborne time-domain electromagnetic data被引量:8
2012年
Traditionally, airborne time-domain electromagnetic (ATEM) data are inverted to derive the earth model by iteration. However, the data are often highly correlated among channels and consequently cause ill-posed and over-determined problems in the inversion. The correlation complicates the mapping relation between the ATEM data and the earth parameters and thus increases the inversion complexity. To obviate this, we adopt principal component analysis to transform ATEM data into orthogonal principal components (PCs) to reduce the correlations and the data dimensionality and simultaneously suppress the unrelated noise. In this paper, we use an artificial neural network (ANN) to approach the PCs mapping relation with the earth model parameters, avoiding the calculation of Jacobian derivatives. The PC-based ANN algorithm is applied to synthetic data for layered models compared with data-based ANN for airborne time-domain electromagnetic inversion. The results demonstrate the PC-based ANN advantages of simpler network structure, less training steps, and better inversion results over data-based ANN, especially for contaminated data. Furthermore, the PC-based ANN algorithm effectiveness is examined by the inversion of the pseudo 2D model and comparison with data-based ANN and Zhody's methods. The results indicate that PC-based ANN inversion can achieve a better agreement with the true model and also proved that PC-based ANN is feasible to invert large ATEM datasets.
朱凯光马铭遥车宏伟杨二伟嵇艳鞠于生宝林君
关键词:INVERSIONCONDUCTIVITY
基于主成分的时间域航空电磁数据神经网络反演方法研究
结合国家自然科学基金项目“放大镜式时间域航空电磁法反演关键技术研究”及国家863计划重大项目“航空地球物理勘查技术系统”的子课题“吊舱式时间域直升机航空电磁勘查理论研究与系统设计”,在时间域航空电磁数据CDI成像的基础上...
车宏伟
关键词:主成分分析法
文献传递
共1页<1>
聚类工具0