利用支持向量机采用的结构风险最优化准则、预测能力强、鲁棒性好等优点,研究了最小二乘支持向量机(Least Squares Support Vector Machines,LS-SVM)回归算法在曳引机故障预测中的应用。提出了一种自动搜寻最优参数方法,对参数和进行寻优,避免了人工选择的盲目性,提高了算法的效率。通过将LS-SVM和RBF神经网络进行对比实验,得出在相同训练样本条件下,LS-SVM可以取得比RBF更好的预测精度和预测速度,更加适合于现场实际应用。最后将LS-SVM模型用于曳引机振动信号的时域分量预测中,预测的平均相对误差小于5%,取得了较高的预测精度。