利用Chebyshev多项式逼近法在单边约束条件下将带有随机参数的Duffing-van der Pol系统转化为与之等价的确定性系统,然后利用确定性系统的数值方法,研究了系统在擦边附近的动力学行为。研究表明,随机非光滑动力系统由擦边到混沌运动过程中,存在一个擦边区间。当控制参数完全经过这个区间时,随机系统才变为和确定性系统类似的混沌运动,而在这个区间内,随机系统经过一个由擦边运动到混沌再到擦边运动的反复过程。同时作者还发现,随机非光滑动力系统在擦边附近存在由随机因素诱发的倍周期分岔现象。
利用随机光滑动力系统的Chebyshev正交多项式逼近方法,研究了双边约束条件下随机vander Pol系统的分岔现象.数值研究表明,双边约束随机van der Pol系统中不仅存在着丰富的倍周期分岔现象,还存在非光滑系统中所特有的擦边分岔.着重研究了随机非光滑系统中的擦边分岔,分析了随机因素对非光滑动力系统中擦边分岔的影响.研究表明,Chebyshev多项式逼近也是研究随机非光滑系统动力学行为的一种有效方法.