The reverse transformation temperature and recovery strain ratio of the martensite formed during the cooling process under a constant stress in TiNi shape memory alloy wires are studied in this paper. Results show that a higher level of the applied constant stress during the cooling process will induce martensite with a higher reverse martensitic transformation start temperature As and a smaller recovery strain ratio. Similarly, a prestrain at the room temperature elevates the As temperature and decreases the recovery strain ratio. However, the As temperature and the recovery strain ratio of the martensite formed during the cooling process under a constant stress are lower than those of the martensite formed by prestrain at the room temperature.