针对核电厂防火设计中使用的火灾区域模型模拟软件CFAST(Consolidated Model of Fire Growth and Smoke Transport)在火源模型方面的缺陷,提出耦合火源与热烟气层的热反馈相互作用的火源计算模型。为了验证新的火源功率计算模型的可靠性,基于核电厂保守性原则,分别进行了开放空间和封闭空间内横向四层电缆桥架电缆燃烧火灾实验。通过比较模型预测的火源功率和温度与实验测量值得到:相对于现有的区域模型软件的火源计算模型,新的火源功率计算模型使得整个火灾过程中火源的热释放速率预测精确度提高了11%;特别是在电缆火焰横向蔓延阶段,精确度提高了24.7%。更重要的是:因为区域模型软件CFAST火源计算模型忽略了烟气的热反馈作用,导致其基于开放空间火源热释放速率测量值计算的热烟气层温度小于实验测量值,该温度数据如用于防火设计将导致缺乏保守性;而修正后的火源计算模型通过耦合火源与热烟气层热反馈的相互作用,使得温度计算结果趋势性的大于实验测量值,使得预测结果趋于精确和保守。
随着计算模型规模与复杂性的不断提高、中子学自动建模程序的发展,中子学计算后处理已逐渐成为中子学分析工作的瓶颈。FDS团队为提高中子学计算后处理效率,利用科学计算可视化等相关技术,自主研发了集数据管理、预处理与可视化分析于一体的中子学可视化系统SVIP-N;并基于可编程图形处理(programm able Graphics Processing Unit,GPU)实现了体数据的裁剪可视化等高级功能。以国际热核实验堆ITER的中子通量密度场为测试用例进行的测试与初步应用实践表明,SVIP-N显著简化了中子学分析工作的流程,提高了分析效率,为中子学计算后处理提供了直观、高效、实用的可视化分析环境。