杨明 作品数:52 被引量:153 H指数:7 供职机构: 中北大学 更多>> 发文基金: 国家自然科学基金 山西省自然科学基金 山西省青年科技研究基金 更多>> 相关领域: 自动化与计算机技术 理学 电子电信 电气工程 更多>>
基于分区选择和Gabor小波的遮挡人脸识别 被引量:2 2023年 局部遮挡人脸识别是人脸识别应用中的一个难点问题.由于遮挡部分对人脸识别没有贡献,因此在进行分类时应排除这些部分.为了解决这一问题,提出一种将分区选择和Gabor小波相结合的遮挡人脸识别方法.首先,将图像分为互不相连的子块,根据图像均方根误差来确定人脸图像中的遮挡区域;其次,利用5尺度8方向的Gabor滤波器对未遮挡分区图像提取特征;然后,用余弦相似度作为纹理分类器对提取的特征进行识别分类;最后,将测试图像中未遮挡分区的识别结果进行决策融合,得到最终分类结果、统计识别正确率等评级指标.在包含不同遮挡的数据集中测试算法性能,识别准确率均达到95%以上. 李溪 杨明 杜雅婷关键词:人脸识别 遮挡 GABOR小波 基于误差修正的传感器阵列水声定位算法 被引量:3 2008年 本文分析了海洋环境中定位精度下降的根源,提出了一种基于误差修正的传感器阵列自主定位算法,并进行了计算机仿真和数据分析,结果表明该算法对于提高传感器阵列自主定位精度是有效的。 刘利军 韩焱 杨明关键词:传感器阵列 基于遗传算法与FCSS相结合的模糊球壳聚类算法 被引量:7 2008年 模糊球壳聚类(FCSS)算法广泛地应用于模式识别与机器学习等领域。由于其采用基于梯度法和交替寻优策略,对初始化比较敏感,容易陷入局部极值点,从而影响聚类效果。将现代全局优化方法之一的遗传算法(GA)与FCSS算法相结合,得到一种新的球壳聚类算法GA-FCSS。数值实验表明:新方法对球壳形数据有令人满意的聚类效果。 惠周利 杨明 潘晋孝关键词:模糊聚类 遗传算法 基于MBP算法和深度学习的人脸识别 被引量:5 2019年 为了解决在深度学习提取人脸图像特征时,易忽略其局部结构特征和缺乏对其旋转不变性学习的问题,提出了一种基于单演局部二值模式(MBP)与深度学习相结合的高效率人脸识别方法。首先,用多尺度单演滤波器对图像进行滤波,得到幅值和方向信息;其次,用LBP算法和象限比特的方法进行编码,分块计算组合其直方图特征;然后,将提取的单演特征作为深度信念网络(DBN)的输入,逐层训练优化网络参数,得到优异的网络模型;最后,将训练好的DBN网络在ORL人脸数据库上进行人脸识别实验,进行识别率计算,其识别率为98.75%。所提出的方法使用无监督的贪婪算法,隐藏层设定为2层,使用反向传播算法优化网络。相较于已知的人脸识别方法,MBP+DBN算法对光照、表情和部分遮挡变化具有较好的鲁棒性,在人脸识别中识别率较高,具有一定的优势,为图像特征提供了一种新的识别方法。 周慧敏 杨明关键词:模式识别 特征提取 基于支持向量机混合采样的不平衡数据分类方法 被引量:13 2021年 利用传统支持向量机(SVM)对不平衡数据进行分类时,由于真实的少数类支持向量样本过少且难以被识别,造成了分类时效果不是很理想.针对这一问题,提出了一种基于支持向量机混合采样的不平衡数据分类方法(BSMS).该方法首先对经过支持向量机分类的原始不平衡数据按照所处位置的不同划分为支持向量区(SV),多数类非支持向量区(MNSV)以及少数类非支持向量区(FNSV)三个区域,并对MNSV区和FNSV区的样本做去噪处理;然后对SV区分类错误和部分分类正确且靠近决策边界的少数类样本重复进行过采样处理,直到找到测试结果最优的训练数据集;最后有选择的随机删除MNSV区的部分样本.实验结果表明:方法优于其他采样方法. 姜飞 杨明 刘雨欣关键词:不平衡数据 支持向量机 过采样 欠采样 一种融合多种特征的SLIC超像素图像分割方法 被引量:1 2023年 为进一步提高分割精度、得到视觉效果更好的分割结果,提出一种融合多种特征的简单线性迭代聚类(SLIC)算法与由FCM和PCM算法(FCMPCM)结合的图像分割方法。算法先将局部同质性特征与纹理特征融入传统SLIC算法特征中,提出一种融合多种特征的SLIC超像素分割算法(SLICHT);然后对由SLICHT超像素分割算法得到的超像素块运用FCMPCM算法进行聚类合并,实现图像分割。与其他图像分割方法相比,该算法的实验结果在分割精度和视觉效果方面都有很好的表现。 杜雅婷 杨明 李溪关键词:图像分割 SLIC 基于小波变换的模糊图像融合技术的研究 2011年 模糊图像融合技术即多聚焦图像融合技术,是指将同一场景的不同聚焦点的图像融合成一幅更加清晰、信息量更大的图像。本文在小波变换的基础上,对源图像不同聚焦点部分进行分割处理,再对分割后的不同区域通过小波变换和优化方法进行分解融合,实验证明这种图像融合方法比传统的融合算法效果好,信息量更多。 刘子龙 杨明 郑源彩 薛迎关键词:图像分割 小波变换 基于间接健康指标的高斯过程回归对锂电池SOH预测 被引量:7 2023年 锂电池性能会随使用时间增加而逐步退化,若更换不及时,可能造成爆炸等严重事故。快速准确预测电池健康状态(state of health,SOH),对于锂电池系统管理和维护以及安全使用至关重要。本工作提出一种基于间接健康指标(health indicators,HIs)和高斯过程回归(Gaussian process regression,GPR)相结合预测锂电池SOH的机器学习模型。首先,通过分析锂电池放电过程,提取若干易于获得且适合动态操作的直接外部特征作为间接健康指标,并计算它们和SOH的相关性,最终筛选出平均放电电压、等压降放电时间、最高放电温度和平台期放电电压初始骤降值作为健康指标;其次,以上述健康指标作为输入特征,利用GPR算法建立锂电池退化模型,对NASA锂电池数据集进行预测,平均绝对误差(mean absolute error,MAE)不超过2%,均方根误差(root mean square error,RSME)控制在4%之内;最后,将本工作模型与其他常用机器学习模型进行比较,再将模型带入不同实验条件的电池中进行泛化性能分析,最大预测误差控制在6%之内,实验结果表明,本工作提出的间接健康指标和GPR模型具有相对较高的预测精度和优秀的泛化能力。 王瑞洁 惠周利 杨明关键词:支持向量机回归 一种粒子群算法与FCSS相结合的模糊球壳聚类算法 2010年 模糊球壳聚类算法(FCSS)广泛应用于模式识别与机器学习领域。由于其采用传统的基于梯度法和交替寻优策略求解模型,对初始值比较敏感,往往只能得到模型的局部极值点,从而影响聚类的效果,甚至使所采用的方法失效。本文将现代全局优化方法之一的粒子群优化算法与模糊球壳聚类算法(FCSS)相结合,利用粒子群算法良好的全局收敛能力来改善传统聚类算法易于陷入局部极值的缺陷,从而得到一种新的球壳聚类算法(PSO-FCSS),数值实验表明,新方法对球壳形数据有令人满意的聚类效果。 吴变样 杨明关键词:粒子群优化算法 聚类分析 基于蚁狮优化高斯过程回归的锂电池剩余使用寿命预测 被引量:1 2024年 迅速获取精确的锂电池的剩余使用寿命和健康状态,对于维持锂电池的可靠性至关重要。针对锂电池剩余使用寿命(remaining useful life,RUL)预测精度较低,传统的高斯过程回归(Gaussian process regression,GPR)模型的超参数寻优结果不理想、预测效果差等问题,使用蚁狮优化算法(ant-lion optimization algorithm,ALO)对高斯过程回归的超参数进行寻优,实现锂电池剩余使用寿命的精确预测。首先,根据电池充电过程中电池电压的循环曲线,提取了6个参数作为电池的健康因子,然后采用Pearson相关系数验证健康因子与电池容量的相关关系,最终选出平均放电电压、恒流充电阶段电池存储的充电量、整个充电阶段电池存储的充电量以及时间积分中的放电温度这4个参数作为健康因子。最后,利用支持向量回归(support vector regression,SVR)、GPR和ALO-GPR对锂电池RUL进行预测,对各项指标进行比较分析。并将本工作所提出的模型与其他文献所提出的模型进行了比较。通过NASA锂电池数据集验证了模型的有效性,实验结果表明,所提出ALO-GPR的RUL预测模型误差小,均方根误差控制在1%以内,平均绝对误差控制在0.65%以内,泛化性强,具有良好的应用前景。 冯娜娜 杨明 惠周利 王瑞洁 宁弘扬关键词:锂电池