电网换相换流器型高压直流输电(line-commutatedconverter based high voltage direct current,LCC-HVDC)系统存在换相失败风险,给电网的安全稳定运行带来威胁。首先分析了传统直流输电系统换相失败的机理;然后从控制保护、增加额外设备及换流器拓扑改造三个方面,综述了目前传统直流输电系统换相失败的抑制方法;最后,面对当今新能源电力系统中交直流混联错综复杂的特征,从换相失败的准确数学模型、复杂耦合机理、快速预测判断指标及新型抑制手段等方面,指出未来在换相失败抑制方面值得深入探索挖掘的研究方向。
当电网换相换流器高压直流输电(linecommutated converter based high voltage direct current,LCC-HVDC)逆变侧交流母线处含有静止同步补偿器(static synchronous compensator,STATCOM)时,LCC-HVDC与STATCOM均需要各自的锁相环(phase-locked-loop,PLL)为其控制系统提供基准。该文考虑LCC与STATCOM锁相环各自动态建立含STATCOM的LCC-HVDC系统的小干扰模型,采用经典特征根分析方法,通过对比LCC-HVDC系统与含STATCOM的LCC-HVDC系统二者之间的锁相环与控制系统参数可行域的差异,研究STATCOM对LCC-HVDC小干扰稳定裕度的影响。最后,通过理论计算,对比有无STATCOM投入时LCC-HVDC系统在不同SCR与不同PLL参数下的最大传输有功功率(maximum available power,MAP)及临界短路比(critical short circuit ratio,CSCR)的变化规律。研究结果表明,当LCC-HVDC连接较弱系统时,控制系统之间的耦合作用对LCC锁相环的稳定可行域产生负面影响,可能引发由于LCC锁相环增益过大而导致的整个混合系统的小干扰失稳现象。
该文推导了电压源换流器型高压直流输电系统(voltage source converter based high voltage direct current,VSC-HVDC)在频域下的多输入–多输出传递函数矩阵模型,通过分析逆变及整流工作模式下VSC不同控制回路被控对象传递函数的右半平面(righthalfplane,RHP)零点分布规律,分析研究RHP零点对VSC不同控制回路自身稳定性的影响;在此基础之上,基于单通道分析设计方法,定量评估逆变及整流工作模式下VSC不同控制回路之间交互作用的强度,对比分析不同控制回路间交互作用对VSC-HVDC系统稳定性的影响;仿真结果验证了理论分析结论的正确性。
该文建立含静止同步补偿器(static synchronous compensator,STATCOM)的电网换相换流器高压直流输电(line commutated converter based high voltage direct current,LCC-HVDC)系统的小信号模型,通过与详细电磁暂态模型的对比,对其准确性进行验证。基于该模型,研究锁相环(phase-locked loop,PLL)、LCC-HVDC与STATCOM控制系统参数对整个系统的小信号稳定性与动态性能的影响,并得到不同控制系统参数的可行域。最后分析锁相环(phaselocked loop,PLL)、LCC-HVDC与STATCOM控制系统之间的相互耦合作用,结果表明该耦合作用使得不同控制系统的参数可行域相互约束,为系统设计和参数选择提供有价值的参考。
针对由彼此落点接近的一条基于模块化多电平换流器型高压直流输电(modular multilevel converter based HVDC,MMC-HVDC)线路和一条电网换相换流器型高压直流输电(line commutated converter based high voltage direct current,LCC-HVDC)线路所构成的混合双馈入直流输电系统,基于多变量反馈控制理论建立可定量分析和评估MMC-HVDC与LCC-HVDC控制系统之间交互影响的等效独立控制通道。在此基础之上,定量分析评估LCC定关断角控制器、锁相环以及MMC锁相环、外环控制器、环流抑制器对MMC-HVDC与LCC-HVDC控制系统交互作用及小干扰稳定性的影响。最后,在PSCAD/EMTDC上搭建混合双馈入直流输电系统的电磁暂态详细仿真模型,仿真验证理论分析结果的有效性。