针对当前分类模型通常仅对一种长度文本有效,而在实际场景中长短文本大量混合存在的问题,提出了一种基于混合神经网络的通用型长短文本分类模型(GLSTCM-HNN)。首先,利用BERT(Bidirectional Encoder Representations from Transformers)对文本进行动态编码;然后,使用卷积操作提取局部语义信息,并构建双通道注意力机制(DCATT)对关键文本区域增强;同时,使用循环神经网络(RNN)捕获全局语义信息,并建立长文本裁剪机制(LTCM)来筛选重要文本;最后,将提取到的局部和全局特征进行融合降维,并输入到Softmax函数里以得到类别输出。在4个公开数据集上的对比实验中,与基线模型(BERT-TextCNN)和性能最优的对比模型(BERT)相比,GLSTCMHNN的F1分数至多分别提升了3.87和5.86个百分点;在混合文本上的两组通用性实验中,GLSTCM-HNN的F1分数较已有研究提出的通用型模型——基于Attention的改进CNN-BiLSTM/BiGRU混联文本分类模型(CBLGA)分别提升了6.63和37.22个百分点。实验结果表明,所提模型能够有效提高文本分类任务的准确性,并具有在与训练数据长度不同的文本上以及在长短混合文本上分类的通用性。
针对当前灰度人脸图像彩色化技术出现的颜色不准确、人脸图像细节损失等问题,提出一种基于自注意力机制的优化的人脸图像彩色化方法。将自注意力机制ACmix模块嵌入到网络模型CycleGAN中,对人脸关键信息进行加权强化;引入involution算子,involution核相比传统卷积核在空间维度上具有更广泛的覆盖,能够自适应地提取更多的人脸信息;设计了一个复合损失函数来计算真实图像与生成图像之间的误差,以提高彩色人脸图像的真实性和自然性。在Multi-PIE和Georgia Tech Face Da-tabase数据集上对改进后的模型进行定量和定性评价,实验表明,与现有方法相比,所提出的模型可以实现更真实、更自然的人脸颜色。