王淼
- 作品数:2 被引量:29H指数:1
- 供职机构:中国人民大学信息学院更多>>
- 发文基金:中国人民大学科学研究基金国家自然科学基金国家教育部博士点基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 差分隐私保护下一种精确挖掘top-k频繁模式方法被引量:29
- 2014年
- 频繁模式挖掘是分析事务数据集常用技术.然而,当事务数据集含有敏感数据时(如用户行为记录、电子病例等),直接发布频繁模式及其支持度计数会给个人隐私带来相当大的风险.对此提出了一种满足ε-差分隐私的top-k频繁模式挖掘算法DP-topkP(differentially private top-kpattern mining).该算法利用指数机制从候选频繁模式集合中挑选出top-k个携带真实支持度计数的模式;采用拉普拉斯机制产生的噪音扰动所选模式的真实支持度计数;为了增强输出模式的可用性,采用后置处理技术对top-k个模式的噪音支持度计数进行求精处理.从理论角度证明了该算法满足ε-差分隐私,并符合(λ,δ)-useful要求.实验结果证明了DP-topkP算法具有较好的准确性、可用性和可扩展性.
- 张啸剑王淼孟小峰
- 关键词:频繁模式挖掘
- 大规模社会网络敏感链接推理方法
- 2013年
- 社会网络中许多应用需要对敏感链接关系进行匿名保护,然而攻击者利用基于推理的攻击可以披露个体之间的链接隐私关系。当前许多基于网络结构的推理攻击方法尽管能够找出链接关系,但由于没有考虑节点之间的相似度量特征而导致推理效率较低,并且也不适用于推理大规模网络节点的链接关系。提出了一种大规模社会网络中基于节点相似度量特征的敏感链接推理框架。该框架包括基于图聚类的特征矩阵划分,针对每个类进行奇异值分解,进而计算出各节点对之间的相似度量值,再以相似度量值为贝叶斯推理条件来计算节点对之间链接存在性的后验概率。实验结果表明,所提出的敏感链接推理方法有较高的推理准确性,增强了推理效果,尤其是在大规模社会网络中,优势更加明显。
- 王淼张啸剑孟小峰
- 关键词:社会网络相似度量