主动磁轴承(Active magnetic bearing,AMB)具有无摩擦、低损耗、寿命长、可控性强等优点,因此广泛应用于各类旋转轴机械装置中,当前,许多应用于磁轴承系统的先进控制手段在理论上有着良好的控制效果,但在实际应用中却存在很大差异。在实际主动磁悬浮轴承系统中,磁悬浮轴承-转子系统制作偏差而使轴承磁力偏移,严重影响转子悬浮控制。为探究悬浮控制过程中转子运动状态,分析对比了等效磁路法与麦克斯韦积分法电磁力计算,在不完全微分PID控制基础上基于试验测试与理论推导提出了一种实际磁悬浮轴承系统下的运动力学分析悬浮控制方法。将转子运动过程分为加速、减速、波动阶段,对每一阶段转子运动行为特性与控制方法选择进行了研究,并应用于实际8极主动磁悬浮轴承系统中,最终使转子动态悬浮于气隙允许范围内。
针对原边反馈反激变换器具有辅助绕组而成本偏高的问题,基于原边反馈与峰值电流控制方案,提出了一种基于开关管漏极反馈的反激变换器模型。与原边反馈反激变换器相比,漏极反馈反激变换器能够减少变压器辅助绕组,降低了成本,且具有较高的稳定性。首先,对此漏极反馈反激变换器模型进行了理论分析,并提出了一种高精度漏极采样方法。其次,基于开关网络模型法对工作在断续导通模式(Discontinuous conduction mode,DCM)下脉冲频率调制(Pulse frequency modulation,PFM)的漏极反馈反激变换器进行了小信号建模并进行补偿设计。通过Matlab/Simulink搭建模型验证其正确性;最后搭建试验平台来进行验证。结果表明,所提出的漏极反馈反激变换器模型是可行的。
在主动磁悬浮轴承(active magnetic bearing,AMB)转子系统的静态稳定悬浮阶段,为了减缓传统PID控制带来的转子过冲碰壁现象,提出一种基于动力学分析的控制策略。对磁轴承转子系统进行理论动力学分析;将实测运动相关量与理论推导的运动量进行对比,修正理论动力学分析存在的不足;基于修正后的动力学分析推导出减缓过冲控制预测条件,结合不完全微分PID控制,形成基于动力学分析的带预测条件的控制策略。系统仿真及样机实验结果均表明该研究方法和控制理论能有效减少AMB转子过冲碰壁现象,实现AMB转子系统的静态稳定悬浮。